

Syllabus

Activity Directors: Nerlyne Jimenez, MD Tina Shah, MD

Summer Meeting

Legacy Lodge at Lake Lanier Islands July 12-14

Jointly Provided by...

American Society of Anesthesiologists

ASA: Working for You

Ronald L. Harter, MD, FASA | President July 13, 2024

Disclosures & Objectives

- Nothing to disclose
- Objectives: Participants will learn
 - How ASA is working nationally and in the states to address current challenges
 - Key trends facing the specialty in the marketplace, legislative, and regulatory arenas
 - ASA's increased focus on delivering value for members

We are ASA: Leaders in Patient Safety

Mission: Advancing the practice and securing the future

Vision: A world leader improving health through innovation in quality and safety

Values: Patient safety, physicianled care and scientific discovery

Strategic Pillars

- 1. Advocacy
- 2. Patient Safety, Quality & Practice Advancement
- 3. Educational Resources
- 4. Member Engagement
- Leadership & Professional Development
- 6. Research & Scientific Discovery
- 7. Stewardship of the Society & Specialty

Special "Thank you" to ...

ASA Director & Alternate Director

William Robert Lane Jr., MD, MBA, FASA Director, Georgia Society of Anesthesiologists

Steven Sween, MD, FASA Alternate Director, Georgia Society of Anesthesiologists and Past Speaker, ASA House of Delegates

ASA Past Presidents

- 1965 Perry P. Volpitto, MD
- 1970 John E. Steinhaus, MD, FACA
- 1999 John B. Neeld Jr., MD, FACA

Anesthesiologists of Note

 Michelle Au, MD, Georgia House of Representatives (District 50)

Special "Thank you" to...

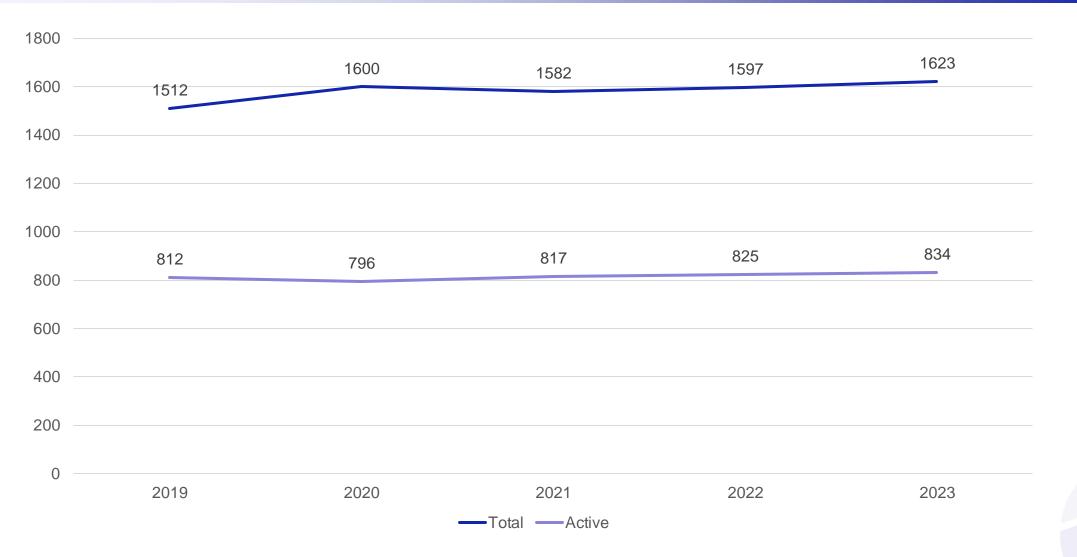
State Component Officers

- Korrin Scott Ford, MD, FASA, President
- Rachel Steckelberg, MD, President-Elect
- Stephen Anderson, MD, Vice President
- Shaun Williams, MD, FASA, Secretary/Treasurer
- Keith Johnson, MD, FASA, Immediate Past President

ASA Committee Chairs

– Matthew A. Klopman, MD, FASA, Committee on Occupational Health

In Memoriam


John B. Neeld Jr., MD, FACA

Past President American Society of Anesthesiologists (1999)

Membership

Georgia Society 5-Year Member Count

Early-Career Membership Program

- Aimed at retaining and building loyalty after training
- Customized for graduating residents and fellows
- Offers simple no-fuss discounted three-year ASA membership
- Wealth of educational and professional development resources designed for newly minted anesthesiologist

Learn more about the program: asahq.org/ecmp

Clinical and career resources showcased monthly, along with courses from their Early-Career (EC) **Education Package**

EC year 2 most engaged, followed by year 1 and 3

SIMPLIFY, STREAMLINE, ACCELERATE, ENJOY THESE RIGHT-FOR-RIGHT-NOW RESOURCES YOUR EARLY-CAREER MEMBERSHIP PROGRAM

APRIL SPOTLIGHT May the malpractice odds be ever in your favor 1 in 14 anesthesiologists will face a malpractice claim this year. This surprisingly easyto-read guide can help you understand the law, reduce your risk, and navigate a lawsuit. DOWNLOAD NOW → Do you know your value proposition? A term borrowed from marketing, your value proposition lays out how you demonstrate clinical, leadership, and strategic excellence. Ideal for responding to requests for proposals, it's best developed before you need it. See how. Craft your value proposition BRAIN BITES Give your mind a workout

Don't miss the chance to try out anesthesiologists' favorite CME on us. Your early-career membership includes top ASA titles, including ACE. Answer 100 multiple choice questions (complete with detailed discussion) to keep your knowledge sharp. View your dashboard.

CREATE YOUR PROFILE

Diversity, Equity, and Inclusion

DEI Goals

ASA will strive to:

- 1. Meet the interests, maximize the contributions, and advance the professional development of all members
- 2. Strengthen engagement by ensuring that all members are encouraged to express their views and share their experiences
- 3. Treat all members with fairness, respect, and dignity
- 4. Be recognized as a diverse, equitable, and inclusive organization
- 5. Ensure that this culture of inclusion is integrated throughout the strategic pillars and initiatives of ASA

ASAPAC Update

Special "Thank you" to ...

Georgia 2024 (YTD) ASAPAC Contributors

- Stephen Anderson
- Mary Arthur
- Laurie Barone
- Ashley Bartels
- Brandon Bowman
- Caitlin Bradley
- Kurt Briesacher
- Andrea Corujo Rodriguez
- William Daniel
- Melissa Darlington
- Heather Dozier
- Justin Ford
- Korrin Ford
- Gregory Foster

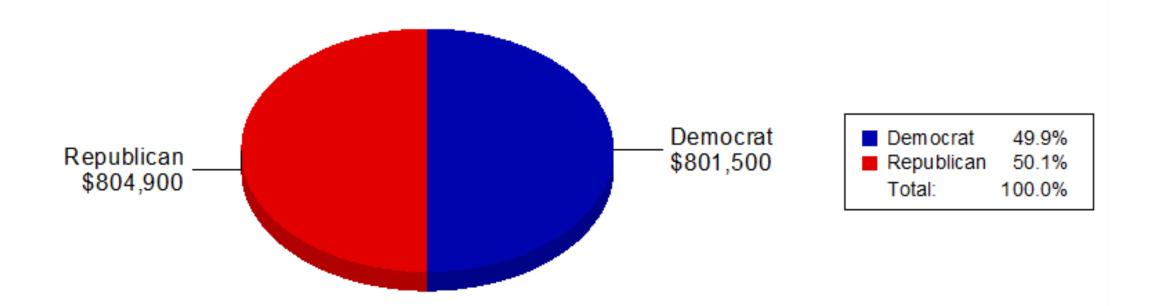
- Maurice Gilbert
- Ryan Goldsmith
- Matthias Grube
- Kimberley Haluski
- Julius Hamilton
- Judith Handley
- Anne Hartney-Baucom
- Darren Hyatt
- Kenneth Ike
- Keith Johnson
- Philip Kalarickal
- Ryan Kissinger
- Matthew Klopman
- John Lane

- William Robert Lane Jr.
- Jason Lemons
- Monique Lotner
- Grant Lynde
- Christa McCurry
- Anne McKenzie-Brown
- Catherine Meredith
- Jefferey Mills
- Phillip Mills
- Katie Monroe
- Kathleen Nissman
- Chinedu Okpukpara

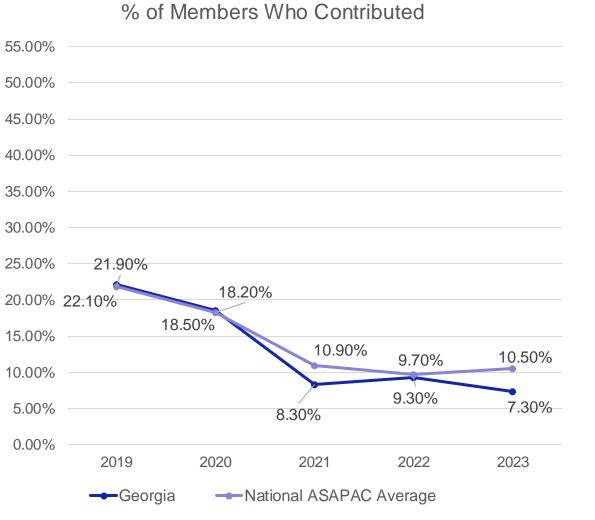
Special "Thank you" to ...

Georgia 2024 (YTD) ASAPAC Contributors (continued)

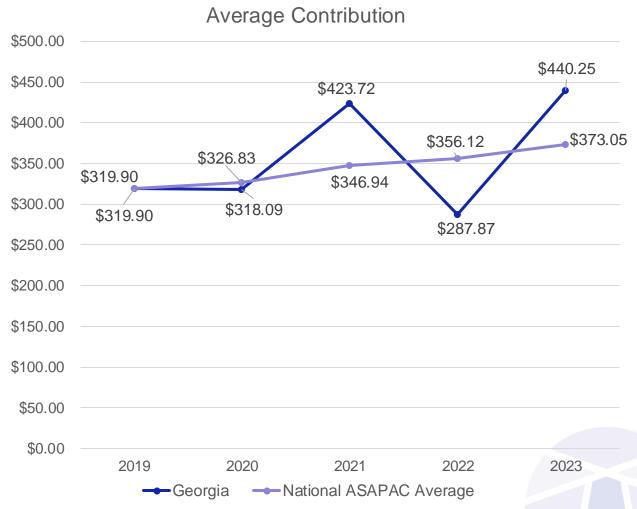
- Oluwatosin Oladipupo
- Isaac Osei
- Chhaya Patel
- Gaurav Patel
- Manish Patel
- Paras Patel
- Vijal Patel
- Ravi Pathak
- Keith Phillippi
- Melissa Rader
- David Reehl Jr
- Madelinn Rice


- Benz Sawhney
- Joanna Schindler
- Lingesh Sivanesan
- Rachel Steckelberg
- John Stephenson
- Jennifer Stever
- Jeffrey Sugarman
- Lindsay Sween
- Steven Sween
- Kristine Tindol
- Jordan Wetstone
- Shaun Williams

- Robert Winham
- Stacie Wong
- Jason York


© 2024 AMERICAN SOCIETY OF ANESTHESIOLOGISTS.

ASAPAC's Balanced Giving Continued in 2022


Total Expenditures by Party

Georgia ASAPAC Member Averages vs. National ASAPAC Averages

ASAPAC's Fiscal Year 2024 national average participation rate is 4.2%, as of May 31, 2024. (Fiscal Year 2024 runs from October 1, 2023 – September 30, 2024).

ASAPAC's Fiscal Year 2024 national average contribution is \$354.42, as of May 31, 2024. (Fiscal Year 2024 ran from October 1, 2023 – September 30, 2024).

Fiscal Year 2023 Participation: Residency Programs

Platinum Status

Residency programs who achieve 100% ASAPAC participation

- Baylor Scott and White
- Cleveland Clinic Florida
- Mayo Clinic Arizona
- Mayo Clinic Florida
- Mount Sinai
- Ochsner Health
- Tulane University
- University of Louisville
- University of Miami Medical Center/Jackson Health System
- University of Nebraska Medical Center

Gold Status

Residency programs who achieve at least 75% ASAPAC participation

Medical College of

Wisconsin

• University of Mississippi

Silver Status

Residency programs who achieve at least 50% ASAPAC participation

• University of Buffalo

Bronze Status

Residency programs who achieve at least 25% ASAPAC participation

- Cleveland Clinic South
 Point
- Riverside University
 Health System
- University of Connecticut

2022 Election Cycle – ASAPAC is #1 again!

Organization	Dollar Amount	
American Society of Anesthesiologists PAC	\$3,950,530	Blue Cross Blue Shield
American Association of Orthopaedic Surgeons PAC	\$2,167,926	\$3,731,753
American Dental Association PAC	\$2,143,337	
American College of Radiology PAC	\$1,935,074	
American College of Dermatology PAC (SKINPAC)	\$1,792,866	American Medical
American College of Emergency Physicians PAC	\$1,677,334	Association \$1,780,757
American Academy of Ophthalmology	\$921,776	<i>, , , , , , , , , , , , , , , , , , , </i>
American College of Ob-Gyns	\$830,418	
American Academy of Family Physicians	\$684,730	
American College of Surgeons Professional Assn PAC	\$664,357	
American College of Cardiology PAC	\$646,194	
American Osteopathic PAC	\$590,037	

ASAPAC QR Code – Don't Leave Home Without It!

ASA Grassroots Network

ASA Grassroots Network

Join the ASA Grassroots Network

Advocacy Update

2023: Year in Review

2023 Review

- Federal Scope of Practice

- Defeated AANA national Medicare "opt-out" campaign
- State Scope of Practice
 - ✓ Defeated <u>18</u> CRNA scope bills
 - Defeated <u>7</u> APRN Compacts
- Opt-Outs
 - WY (partial)*, DE (full), CO (full)*
- New Medical Title Protection Laws (3)
 - GA, ND (Truth in Advertising only), OR (FL, Governor vetoed)
- New Certified Anesthesiologist Assistants Practice Laws (2)

2023 Review (continued)

- Other accomplishments

- ASA/Bonnie Milas, MD, advocacy for OTC naloxone
- Joint amicus briefs in support of winning Texas Medical Association (TMA) No Surprises Act lawsuits
- Medicare anesthesiology teaching rule – more than \$600 million

FDA NEWS RELEASE

FDA Approves First Over-the-Counter Naloxone Nasal Spray

Agency Continues to Take Critical Steps to Reduce Drug Overdose Deaths Being Driven Primarily by Illicit Opioids

Judge Rules Against No Surprises Act Implementation in Texas Medical Association Lawsuit

2024: News Impacting Anesthesiology

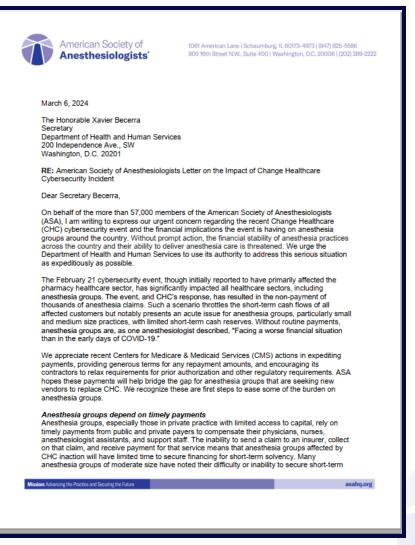
Massachusetts BCBS Colonoscopy

Home // Local Coverage // Health

Blue Cross halts controversial colonoscopy changes after backlash from doctors

Updated January 25, 2024

By Priyanka Dayal McCluskey


 $f \simeq$

"The policy took effect Jan. 1, drawing outrage from doctors who worried it would slow their productivity and discourage patients from getting a potentially life-saving procedure over fears of discomfort and pain. Doctors had lobbied Blue Cross officials to reconsider the changes, <u>WBUR reported earlier this month</u>."

Change Healthcare Shutdown

"Without prompt action, the financial stability of anesthesia practices across the country and their ability to deliver anesthesia care is threatened. We urge the Department of Health and Human Services to use its authority to address this serious situation as expeditiously as possible."

ASA President Ronald L. Harter, MD, FASA, to HHS Secretary Xavier Becerra on March 6, 2024

Physical Status Modifiers Change

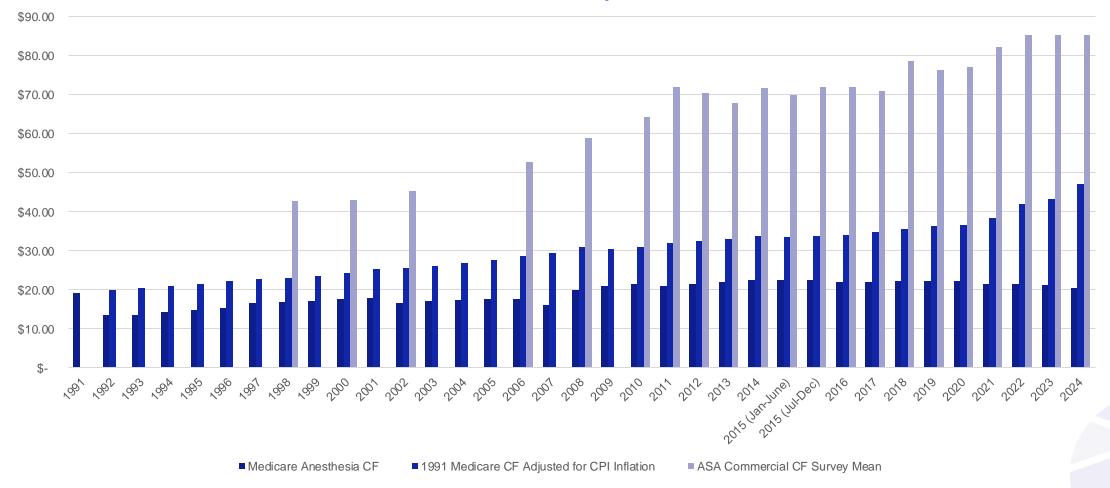
- In April, Blue Cross Blue Shield (BCBS) state affiliates announced they will no longer provide additional payment for physical status modifiers III, IV, and V
- Aetna announced they are eliminating similar payments for physical status modifiers as well

- ASA Action

- ASA strongly opposes this policy change and is actively pursuing its reversal
- Contacted BCBS and Aetna to express vehement opposition
- Supporting state component societies
- Encouraging states to express concern to insurance commissions, state hospital associations, and legislators

Physical Status Modifiers Change

- Private Insurance is going against good medicine and current trends
- Medicare is increasingly recognizing patient complexity as an important factor for patient-centered care:
 - G2211 Code recognizes complexity in primary care
 - Patient complexity a factor in MIPS Performance Category Scores
 - Social Determinants of Health may be used to risk adjust several hospital-based measures


If you have been notified by your BCBS state affiliate or another payer implementing this policy change, ASA can assist your efforts. **Contact our Department of Payment and Practice Management: ppm@asahq.org**

Medicare: Broken Payment System

Medicare Anesthesia Payment Trends

Medicare Anesthesia Payment Trends

Medicare Payments – 2024 Rates

Some "doc fix" relief - but nowhere near enough

- Offset of 1.66% of the 3% plus cut included in March government funding package
- No retroactive fix included
- CMS announced new official conversion factors, effective March 1, 2024: Anesthesia conversion factor is \$20.77 and the RBRVS conversion factor is \$33.29

Final 2024 Medicare Fee Schedule Rule

	2023 CF	Proposed 2024 CF	Final 2024 CF	Percent Change (2023 to 2024)
Anesthesia	\$21.12	\$20.44	\$20.77	-1.68%
RBRVS	\$33.89	\$32.75	\$33.29	-1.76%

Breaking News - 2025 Medicare Physician Fee Schedule Proposed Rule

- The Centers for Medicare and Medicaid Services (CMS) released the 2025 Medicare Physician Fee Schedule proposed rule on July 10, 2024
 - Anesthesia Conversion Factor reduction of 2.1%, to take effect Jan. 1, 2025
 - The resource-based relative value scale unit rate, used for payment of pain, critical care, and other physician services, will face a 2.8% cut

	2024 CF	Proposed 2025 CF	Percent Change
Anesthesia	\$20.77	\$20.33	-2.10%
RBRVS	\$33.29	\$32.36	-2.80%

 CMS also announced that they are accepting the new Fascial Plane Block codes that ASA worked to create and accepted our recommendations for their valuation. Effective Jan. 1, 2025, CMS will pay for the performance of these blocks.

Medicare Payment – Fundamental Reforms Needed

Issue:

- Current CMS Medicare physician formula:
 - Lags annual inflation
 - Includes budget neutrality mechanism
 - Causes cuts or freezes every year

ASA Action:

- Strengthening Medicare for Patients and Providers Act (H.R. 2474) – add mandatory annual inflation adjustment
- Provider Reimbursement Stability Act of 2023 (H.R. 6371)
 - reforms budget neutrality mechanism

No Surprises Act Implementation

No Surprises Act (NSA): Regulatory Update

- Regulation pending (expected September 2024)
 - Possible content
 - Insurers required to provide more information, including codes to more clearly identify if claim is eligible for federal or state dispute resolution process
 - Permits batching by anesthesia body part CPT range
 - Shortens 90-day cooling-off period
 - Key ASA requests
 - Batching by insurer conversion factor (CF)
 - Enforcement mechanism for post-independent dispute resolution (IDR) 30-day payment requirement

No Surprises Act: New Data

- Key findings from data release of June 13, 2024
 - Provider initiated disputes
 - 2023 Q3 63,395 of 69,295 (78% win rate)
 - 2023 Q4 279,492 of 313,314 (85% win rate)
 - Dispute by health plan type partial or fully self-insured
 - 2023 Q3 43,379 of 69,294 (63%)
 - 2023 Q4 187,841 of 313,314 (60%)
 - NSA fees
 - 2023 Q3 \$27M (adm) and \$21M (IDR)
 - 2024 Q4 \$21M (adm) and \$36M (IDR)

No Surprises Act: New Data (continued)

CPT Range	Specialty	Median Prevailing offer as % of QPA	Total Number of Payment Determinations	Total Number of Items or Services
or i ritange	opeolary		Determinations	
99281 - 99288	Emergency Department Services	s 227%	27,496	35,385
70010 - 79999	Radiology	532%	6,311	20,372
N/A	Air Ambulance	242%	3,326	3,356
10004 - 69990	Surgery	830%	2,483	2,665
95700 - 96020	Neurology and Neuromuscular Procedures	964%	1,960	2,292
100 - 1999	Anesthesia	199%		
99291 - 99292	Critical Care Services	299%		
99466 - 99480	Inpatient Neonatal Intensive Care Services and Pediatric and Neonatal Critical Care Services	538%	276	1,404
99221 - 99239	Hospital Inpatient Services	249%	-	
93880 - 93998	Non-Invasive Vascular Diagnostic Studies	1,075%		
80047 - 89398	Pathology and Lab	238%		
		20070		010
99217 - 99226	Hospital Observation Services	217%	221	251
92920 - 93799	Cardiovascular Procedures	211%	91	95
99460 - 99463	Newborn Care Services 29	536%	10	48
99151 - 99157	Moderate (Conscious) Sedation	305%	15	46
96360 - 96549	Hydration, Therapeutic, Prophylactic, Diagnostic Injections and Infusions, and Chemotherapy and Other Highly Complex Drug or Highly Complex Biologic Agent Administration	x 100%	. 22	27

Prevailing Offers Relative to Qualifying Payment Amount (QPA) by Specialty, 2023 Q3

No Surprises Act: New Data (continued)

CPT Range	Specialty	Median Prevailing offer as % of QPA	Total Number of Payment Determinations	Total Number of Items or Services
99281 - 99288	Emergency Department Services	224%	42,716	43,393
70010 - 79999	Radiology	559%	9,996	11,234
10004 - 69990	Surgery	967%	4,650	4,665
	Neurology and Neuromuscular			
95700 - 96020	Procedures	1,262%	4,219	4,222
100 - 1999	Anesthesia	219%	3,232	3,284
N/A	Air Ambulance	225%	2,462	2,466
99291 - 99292	Critical Care Services	328%	2,388	2,403
	Non-Invasive Vascular			
93880 - 93998	Diagnostic Studies	779%	500	530
99221 - 99239	Hospital Inpatient Services	216%	264	277
	Inpatient Neonatal Intensive Care Services and Pediatric and			
99466 - 99480	Neonatal Critical Care Services	475%	185	256
99217 - 99226	Hospital Observation Services	217%	170	172
92920 - 93799	Cardiovascular Procedures	294%	120	120
99151 - 99157	Moderate (Conscious) Sedation Prophylactic, Diagnostic	553%	70	70
	Injections and Infusions, and			
	Chemotherapy and Other Highly			
	Complex Drug or Highly			
	Complex Biologic Agent			
96360 - 96549	Administration	100%	67	67
80047 - 89398	Pathology and Lab	100%	47	48
	Delivery/Birthing Room			
	Attendance and Resuscitation			
99464 - 99465	Services	547%	15	15

Prevailing Offers Relative to QPA by Specialty, 2023 Q4

© 2024 AMERICAN SOCIETY OF ANESTHESIOLOGISTS.

No Surprises Act: Legislative Update

- Coming soon
 - Legislation to add civil monetary penalties for insurers who do not comply with post-IDR 30-day payment requirement
 - Bipartisan: Lead will be Rep. Greg Murphy, MD (NC)

Center for Anesthesia & Perioperative Economics (CAPE)

Purpose:

- Elevate ASA's profile of payment strategy and serve as a point of interaction with CMS, the insurance industry, and other stakeholders
- Serve as a resource for policy development
- Focus members and staff resources on a comprehensive strategy
 - Medicare
 - Medicaid
 - Commercial payment

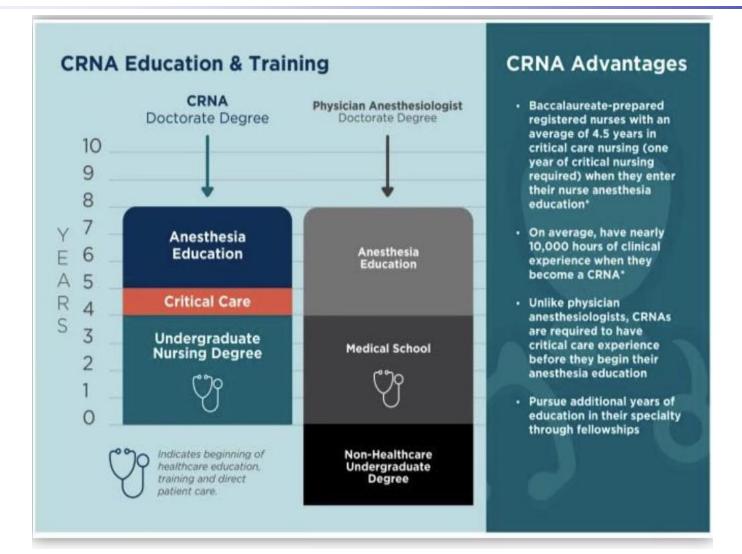
Safe VA Care

VA National Standards of Practice

Issue

 Block VA Office of Nursing Services (ONS) initiative to dismantle teambased care and move to CRNA-only model

ASA action


- Partnership with AVAA
- Congressional engagement
- Veteran Service Organizations (VSO)
- High-level VA officials

"We strongly believe that VA's proposed move to a nurse-only model of anesthesia care is a solution in search of a problem. A solution that could risk Veterans' lives, especially toxic exposed Veterans."

- Dr. Ronald L. Harter on Sept. 19, 2023, speaking at congressional hearing

AANA Testimony to House Health Subcommittee

In the States

Other Initiatives in the States

- Opt-Outs

✓ Monitoring for at-risk states

- CRNA Legislation

- ✓ Defeated 12 AANA-led scope efforts
 - Florida: 25th straight year
 - ✓ West Virginia: 6th straight year

- **Proactive Medical Title Protection**

Tennessee: new law enacted

- Proactive Certified Anesthesiologist Assistants (CAA)

✓ Washington state: new law enacted

Additional Advocacy Initiatives

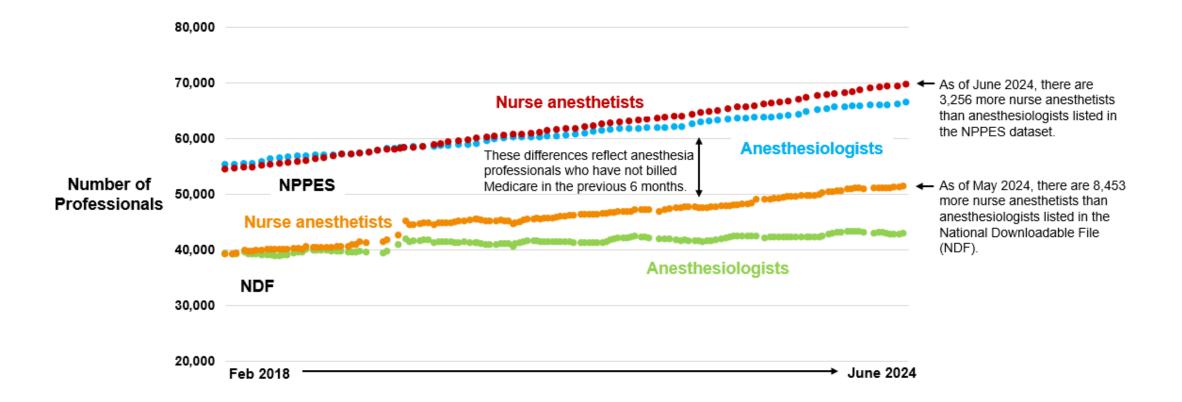
New "Pain Medicine Coalition"

- Pain Medicine Coalition (previously called the Pain Care Coalition)
 - Participants: Founding members are ASRA PM and ASA; additional members to be added by invitation
 - Why regroup now? Reconvening as the Pain Medicine Coalition to work together on issues of interest to the pain community

- Goals

 To develop, monitor, and advocate for responsible health care policy on behalf of individuals with pain and the professionals who support them through clinical care, education by addressing quality of care, access to care, public and professional education, and research

Workforce


ASA Workforce Initiatives

- ASA Workforce Summits June 2022 and November 2023
- Endorsements and Support
 - H.R. 2389 / S. 1302, the Resident Physician Shortage Reduction Act
 - Funding for 14,000 additional residency positions (through 2031)
 - H.R. 1202 / S. 704, the Resident Education Deferred Interest (REDI) Act
 - Permits residents to qualify for interest-free deferment on their student loans while serving in a medical or dental internship or residency program

• H.R. 2761 / S. 705, the Specialty Physicians Advancing Rural Care (SPARC) Act

 Authorizes a loan repayment program to encourage specialty medicine physicians to serve in rural communities experiencing a shortage of specialty medicine physicians

How Many Anesthesiologists and Nurse Anesthetists Are There? Feb 2018–Jun 2024

Source: NPPES/NPI Datasets, 2/15/2018–06/09/2024 and CMS Provider Data: Doctors and Clinicians, National Downloadable File (NDF). Updated 05/30/2024. Available at https://data.cms.gov/provider-data/dataset/mj5m-pzi6 Referred as the CMS Physician Compare National Downloadable File prior to May 2021.

ASA Anesthesia Workforce Summit II

- ASA convened a second Anesthesia Workforce Summit November 2023
- Purpose: Build upon the work from the first Summit and obtain additional perspectives and priorities to help guide ASA initiatives concerning:
 - Advocacy to expand residency programs and facilitate use of internationallytrained physicians
 - Anesthesiology "ownership" of NORA and procedural sedation services
 - Involvement of anesthesiologists in health system leadership and communication of the anesthesiology value proposition
- Workforce data, communications, and education regarding workforce issues and potential solutions
- Development of toolkits and case examples to assist practices and hospitals
- Collaboration with other organizations with aligned interests

Supply and Demand

Supply

- 1) Increase pipeline for anesthesiologists
- 2) Decrease attrition

Demand

- 3) Create better OR/NORA efficiencies
- Consider what can be done by other professionals under the guidance of the anesthesia department to decrease demand for anesthesia professionals

Education and Science

the American Society of Anesthesiologists®

PHILADELPHIA | OCTOBER 18-22, 2024

#ANES24

Breakthrough ideas. Stimulating research. **Extensive CME.**

Attendees say: "I can't imagine a better way to interact with my profession."

Say yes to #ANES24: asahq.org/annualmeeting

ASA® ASA® The Anesthesiology Business Event

JANUARY 31–FEBRUARY 2, 2025 ATLANTA, GA

Sign up to be the first to know when registration opens for next year's event: asahq.org/ADVANCE2025

ASA Education Portfolio

- ACE
- Anesthesia SimSTAT
- Summaries of Emerging Evidence (SEE)
- Diagnostic Point-of-Care Ultrasound Certificate Program
 - New Gastric POCUS Certificate Program
- Fundamentals of Patient Safety
- PeRLS: Perioperative Resuscitation and Life Support Certificate
- Patient Safety Highlights
- Anesthesia Toolbox
- Anesthesia Complimentary Education
- Procedural Sedation

Diagnostic Point-of-Care Ultrasound Certificate Program

Diagnostic Point-of-Care Ultrasound Certificate 2024 released with incremental credit claiming for anesthesiologists to claim up to 60 CME and 10 MOCA[®] Part 4 points

Part 1: Complete a QI Action Plan (optional)

EXAM

Part 4: Perform and acquire images for mentor review

Take the final exam

Part 5:

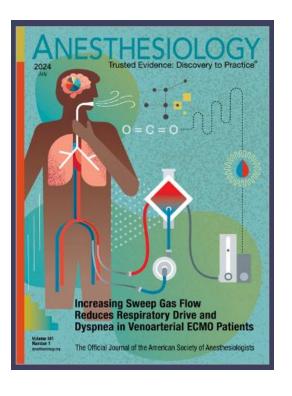
Part 2: Provide evidence of past POCUS education/training

Part 3: Identify and interpret online cases

0	

Achieve your certificate of completion

Find out more: asahq.org/POCUS


Anesthesiology

anesthesiology.org

Official Peer-Reviewed Journal of the ASA

Mission: promoting scientific discovery and knowledge in perioperative medicine, critical care, and pain medicine to advance patient care.

- Enduring Importance and Foundational Value: Impact factor 9.1
- Publication Speed: averages 3 days to online publication after acceptance for original research articles
- Rich Multimedia: Podcasts, video abstracts, and visual abstracts enhance issue content
- Online Readership: Over 2.8 million visits in 2023 (46% United States, 54% International)
- Member Satisfaction: 85% satisfied/extremely satisfied

ASA Monitor

asamonitor.org

Official News Publication of the ASA

- Leading source for objective, fact-based reporting, and thoughtful dialogue for the perioperative health care community
- Columns: In the Know, Trends & Technology, Facility Spotlight, Career Connection, Your Patient's Brain, Ask the Expert, The Curious Economist, Committee News, Dr. Gearhead, The Pulse
- Central Line: Inside the Monitor monthly podcasts focused on the special theme of the issue


ASA Monitor+ Supplement – available online May 9

New Frontiers in Patient Safety

Leadership and Professional Development Resources

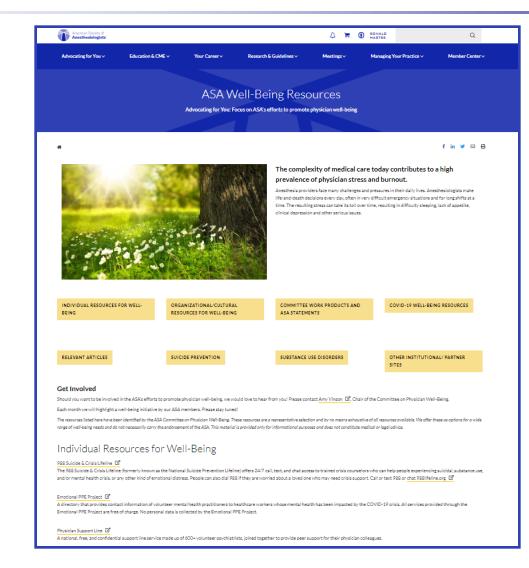
- ASA Leadership Academy
- ASA Career Development Workshop NEW
 - Curriculum Vitae Review Session
- Be the Solution: Sell Your C-Suite on the Value and Leadership of Anesthesiologists
 - Toolkit to engage with your hospital administrators and offers resources on topics important to them
- ASA Legislative Conference
 - Leadership Spokesperson Training Program

Anesthesia Toolbox

- 120+ residency programs subscribed; each with a private learning community
- Faculty can share and assign content to residents as well as medical students rotating at their program
- Editor-in-Chief Dr. Christina
 Spofford and the Editorial Board for
 Anesthesia Toolbox oversee content
 review and development


asahq.org/toolbox

ASA and Well-Being


What ASA is Doing for Physician Well-Being

- In 2019, ASA created the Committee on Physician Well-Being
- The committee impacts through working groups on:
 - ASA Outreach
 - Clinician Mental Health and Suicide Prevention
 - Systems and Policy Impacting Well-Being
 - Education and Endeavors

ASA Resources

https://www.asahq.org/in-the-spotlight/wellness-resources

Clinician Well-Being Resources

- The new SafeHaven[™] program offers confidential:
 - Peer coaching
 - Concierge services
 - Behavioral health resources
 - 24/7 Crisis Hotline
- ASA and the Charitable Foundation are partnering with VITAL WorkLife to deliver program services
- Resources are for clinicians and family members for a reduced rate
- Enrollment opened June 1
- As of early July, 70 enrollees

asahq.org/safehaven

Foundations

Make a Difference: Donate Today!

The Anesthesia Foundation ASA Charitable Foundation Anesthesia Patient Safety Foundation Foundation for Anesthesia Education and Research Wood Library-Museum of Anesthesiology

Questions?

Department of Anesthesiology

A Rational Approach to Intraoperative EEG

Philip Kalarickal, MD, MPH Divisions of Cardiothoracic and Liver Transplantation Anesthesiology July 13, 2024

Disclosures

- None
- Will be discussing processed EEG
- Emory currently uses Sedline monitors

Anesthesia

- One of the greatest breakthroughs in modern science, yet still one of the greatest mysteries
- Anesthesia = "without sensation"

Anesthesia

- One of the greatest breakthroughs in modern science, yet still one of the greatest mysteries...
- Greek "without sensation"
- Characteristics
 - Unconsciousness
 - Amnesia
 - Analgesia
 - Akinesia
- > 60k GA cases/d in US

Anesthesia

- Black Box
 - You go under and you come out
 - "Losing time"
 - Awareness??
 - Source of great anxiety for patients
- How do we monitor the adequacy of anesthesia?
 - Indirectly
 - CV
 - Movement, tearing
 - ETAG
 - Directly
 - Electroencephalogram

Objectives

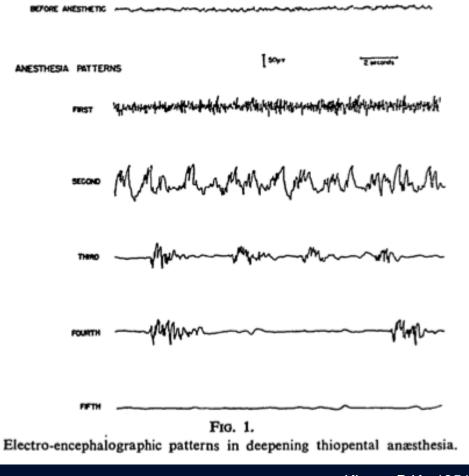
- Review electroencephalography in historical and clinical context
- Provide framework for modern use of intraoperative EEG
- Review EEG indices and clinical implications

Monitoring

- ASA Standard Monitors
- Monitoring the brain is not one of them
- Monitors of the brain exist
 - Functional MRI
 - PET
 - Electroencephalogram

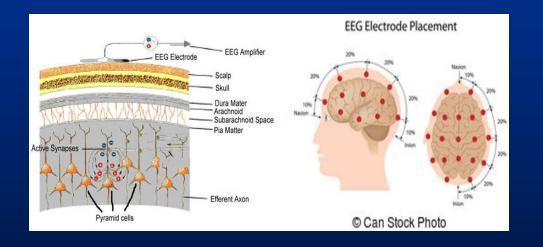
EMORY

SCHOOL OF MEDICINE


ELECTRO-ENCEPHALOGRAPHIC PATTERNS PRODUCED BY THIOPENTAL SODIUM DURING SURGICAL OPERATIONS: DESCRIPTION AND CLASSIFICATION

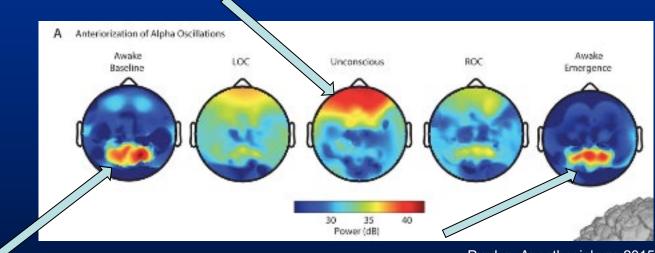
By DONALD K. KIERSEY, REGINALD G. BICKFORD and ALBERT FAULCONER, JR.

BJA, 1951



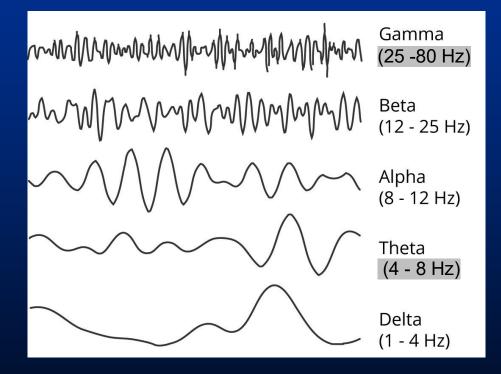
Kiresy, BJA, 1951

EEG-Basics



- EEG measures cortical electrical activity.
- Cortex and deeper structures are richly interconnected...
 - Cortical signals are a good surrogate for brain state of deeper structures.

EEG - Basics

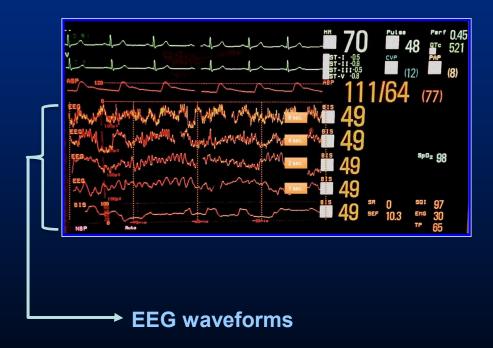

Purdon, Anesthesiology, 2015

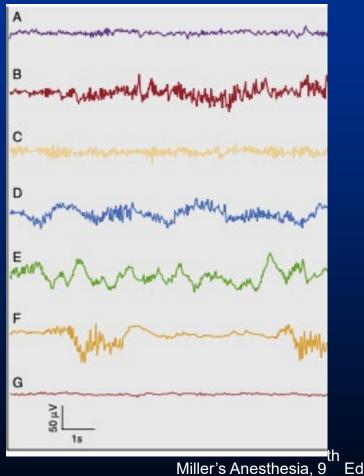
EEG Basics

- Frequency Hz
- Power- microvolts.
- Typically 4 or 5 main waveform types
- Combinations of waveforms are seen in any given condition

EEG under anesthesia

Phase 1	Dept of Anesthesia Light	Typical Patterns of EEG	
		Decreased beta activity and increased alpha and delta activity	had managed and the state of the second states and the second stat
2	Intermediate	Further decreased beta activity and increased alpha and delta activity (more increase in alpha and delta activity in anterior EEG leads, i.e. the "anteriorization" pattern)	www.mandan.www.man.www.
3	Deep	Periods of flat activity alternating with bursts of alpha and beta activity (the so-called "burst suppression" pattern)	
4	Profound	Completely flat activity	

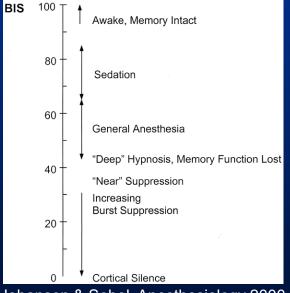

Figure. Typical EEG patterns seen under general anesthesia as sedation deepens. Surgery is usually performed in phases 2 or 3. EEG indicates electroencephalography. Modified from Brown et al.²



Intraoperative EEG

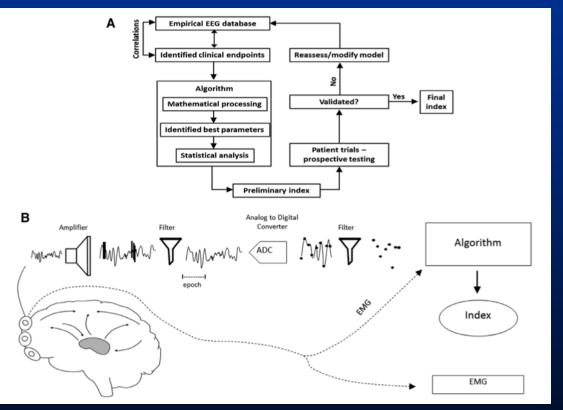
• Easier said than done...

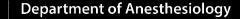
Intraoperative EEG


- EEG waveform interpretation can be complex
- Difficult to perform in perioperative environment by non-experts.
- Has not been widely adopted in Anesthesia practice

Processed EEG

- Not much interest in routine use of EEG until 1990's
- Development of processed EEG (pEEG)
 - Using few channels (1-4) rather than full montage
 - Frontal location for ease of use
 - Signal is filtered and processed through proprietary algorithm to give a unitless dimension of depth of anesthesia and awareness.
 - Most common of these is the BIS monitor.
- Benefit of much simpler interpretation


Johansen & Sebel, Anesthesiology 2000

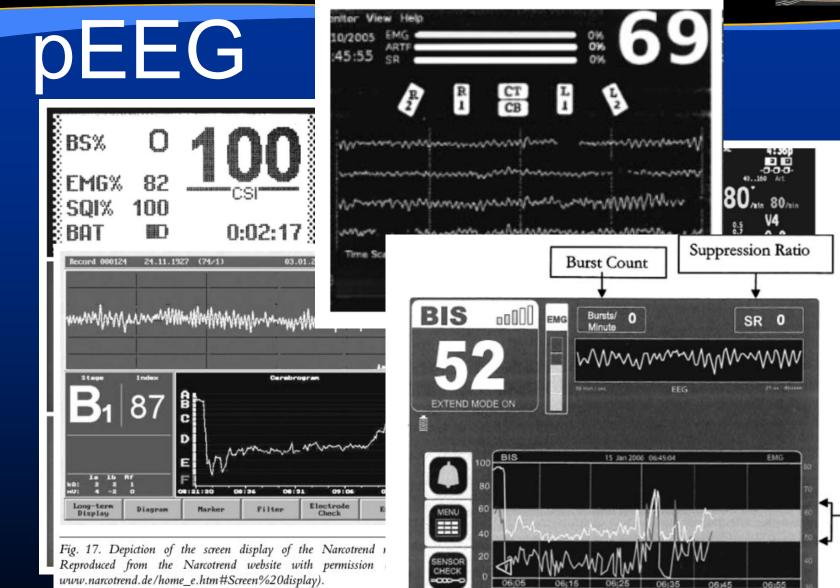


pEEG

Department of Anesthesiology

Fahy and Chau, Anesth Analg, 2018

EMORY


UNIVERSITY SCHOOL OF MEDICINE

X.

Target

Range

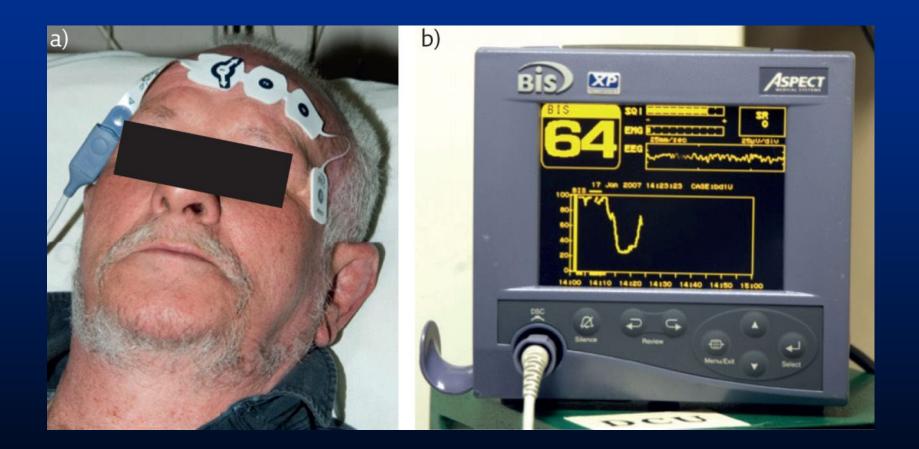
Jameson and Sloan, J Clin Computing and Monitoring, 2006

Processed EEG Depth-of-Anesthesia Monitoring

Table, Brief Description of Curr e Processed EEG-Based Monitors in Alphabetical Orde Monito Features The AEP index, the AAI, is an index relying on MLAEP and EEG signals. Bilateral click stimuli AEP Monitor/2 (Danmeter A/S, Odense, Denmark) are delivered through headphones. The EEG signals after the stimuli are discerned from the background EEG noise and processed for MLAEPs, reflecting neural activity within the thalamus and primary auditory cortex. When the AEP signals are low in quality, the AAI is derived mainly from EEG-based spectral parameters. Burst suppression ratio and EMG data are also displayed. Two index scales: 0-60 and 0-100.* BIS Monitor (Medtronic, Minneapolis, MN) It utilizes an algorithm based on power spectral analysis, bispectral analysis, and burst suppression data. The derivation of the BIS index is achieved through a weighted sum of relevant subparameters. The BIS index scale is from 0 to 100. In addition to a single-channel EEG, it also offers a bilateral sensor for assessment of asymmetry. Density spectral arrays and spectral edge frequencies can be displayed as well as EMG activity and burst suppression information.³ Cerebral State Monitor (Danmeter A/S, The algorithm for the cerebral state index utilizes frequency domain analysis and burst suppression Odense, Denmark) ratio processed with fuzzy logic methodology for inference of the index. It uses a single-channel EEG with an index scale of 0 to 100. In addition to the index, it also provides measures of burst suppression percentage and EMG activity.18 Entropy Module (GE Health care The algorithm uses spectral analysis to produce 2 main parameters for overall assessment of Technologies, Helsinki, Finland) depth of anesthesia; the SE, for depth of hypnosis (index scale, 0-100), and RE, for indirect assessment of noniception/responsiveness to stimuli (derived from the frontal EMG: index scale. 0-91). A widening difference between SE and RE is deemed a likely indicator of inadequate anesthesia. In addition to the waveform display of SE and RE, a burst suppression ratio is also displayed. It uses a single-channel EEG.⁷ Index of consciousness monitor (Morpheus The index of consciousness is derived via symbolic dynamics, a time domain method that divides Medical, Barcelona, Spain) the EEG signals into partitions and labels each partition with symbols of 1 and 0, depending on mathematical determination. It is conceptually similar to entropy. This approach can detect nonlinear EEG characteristics and assess levels of signal complexity. The algorithm also includes frequency domain methods and burst suppression analysis. A fuzzy logic inference system is used in index derivation. Burst suppression and EMG information are also displayed. Singlechannel EEG with an index scale of 0 to 99.11. Narcotrend Monitor (MonitorTechnik, Bad The Narcotrend index is derived from a system developed for the visual classification of the EEG Bramstedt, Germany) patterns associated with stages of natural sleep. It uses burst suppression, time, and frequency domain analysis to extract the relevant EEG parameters, which are then classified through plausibility testing into a total of 14 possible substages: A (awake) to F (deep) with further subdivisions. The most recent version also provides an index from 0 to 100. Uses 1- or 2-channel EEG. Also displays EMG information.³² NeuroSENSE Monitor (NeuroWave Systems The WW/ons index is calculated via wavelet analysis of the EEG signals in the gamma frequency Inc., Cleveland Heights, OH) band, using a deterministic approach (a method that always produces the same output for a given EEG interval). This monitor was purposefully developed for use in anesthesia closed-loop delivery systems. It uses bilateral brain monitoring for derivation of index with a scale of 1 to 100.28 SEDline Monitor (Masimo, Irvine, CA) The patient state index is calculated by a 4-channel EEG with an algorithm incorporating high heterogeneity of variance at different levels of sedation/hypnosis, taking into account anteriorposterior relationships in the brain and coherence between bilateral brain regions. Burst suppression data and plausibility analysis are applied for final index derivation. It also displays bilateral density spectral arrays, and bilateral 4 channels of raw EEG waveforms. Scale consists of 0-100, with optimal depth between 25 and 50 (in contrast to other monitors with similar scale and recommended anesthetic depth between 40 and 601.14 SNAPII Monitor (Stryker, Inc., Kalamazoo, MI) The SNAP index is based on calculations involving power spectral analysis in the 0 to 18 and 80 to 420 Hz frequency ranges, called the low-frequency index and high-frequency index, respectively, for the derivation of the single index. It claims an algorithm that minimizes artifacts and a shorter lag time to detect patient awakening. It uses a single-channel EEG and an index scale of 0 to 99.1 The qCON index is derived from spectral analysis and burst suppression rate and processed through qCDN 2000 monitor (Quantium Medical, Barcelona, Spain) an artificial neural network and fuzzy logic system. Conceptually, it has similarities to the entropy approach. The qCON index is a measure of hypnosis, whereas the qNOX index is a measure of noniception, each similarly derived through different frequencies. Both indexes range from 0 to 99. The qNOX reference scale was derived through EEG signals in patients moving in response to nailbed pressure. Single-channel EEG. Also displays EMG and burst suppression data.14

This list is not intended to be all inclusive.

Abbreviations: AEP auditory-evoked potential; EEG, electroencephalogram; EMG, electromyogram; MLAEP middle-latency AEP; RE, response entropy; SE, state entropy.


Fahy and Chau Anesth Analg 2018

Body Text

pEEG = BIS

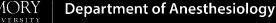
pEEG -BIS

- Combination of power spectrum, bispectrum and suppression ratio with unknown weights to produce the unitless BIS value
- Initial studies demonstrated decreased awareness with use
- FDA approved device to be marketed as a depth of anesthesia and awareness monitor.
- Marketing heavily emphasized it could prevent awareness if used...

pEEG-BIS

- B-Aware
 - Myles et al, Lancet 2004
 - Prospective, double-blind, multicenter trial of awareness
 - 2463 patients at high risk for awareness randomized to
 - BIS guided group BIS scores between 40-60
 - Usual care group BIS sensor placed but not turned on
 - Awareness assed by blinded assessors at 6h, 24-36h, 30d
 - 2 reports of awareness in BIS group and 11 in usual care group (p= 0.022)

Department of Anesthesiology


BIS – flaws? 100 90 80 70 Several case reports of awareness 60 Some studies demonstrating low BI 40 Messner et al, Anesth Analg, 2003 \bullet 30 в С D Ε F G н I J Study of 3 volunteers \bullet 20 100 10 0 90 00:00 8 8 8 8 8 8 8 8 8 nlv 100 ss by follov earm. 80 90 BIS less than 6 70 80 BIS 60 70 50 00:00 01:00 02:00 05:00 00:90 02:20 08:00 00:60 03:00 4-00 TIME 00:00 01:00 00:00 02:00 03:00 04:00 05:00 00:90 08:00 00:70 TIME

pEEG – limitations

- One size fits all algorithm
 - Unknown components?
 - EMG
 - Assumption that mechanism of anesthesia and EEG changes are the same for:
 - All agents
 - All patients
 - All ages
- Values lag 1-2 minutes behind EEG values.

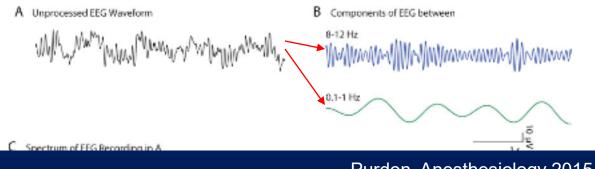
pEEG - BIS

• B-Unaware

- Avidan et al, NEJM 2008
- Prospective, randomized trial of 1,941 patients at high risk of anesthesia awareness comparing
 - BIS guided group BIS scores between 40-60
 - ETAG guided group maintain ETAG 0.7 MAC 1.3 MAC
 - Awareness assessed by blinded assessors with Brice questionnaire
 - 24 hrs, 24-72 hrs, 30 days
- Results: 2 incidents of definite awareness in each group
- Conclusion: With ether based inhalational anesthetics, using BIS guided protocol was <u>not</u> superior to ETAG based protocol.
- Several criticisms of this trial, however...

pEEG -BIS

- B Unaware criticized for sample size, single center and patient selection
- Avidan et al BAG-RECALL, NEJM 2011
 - Prospective, randomized, single-blinded, multicenter trial of patients at high risk of awareness
 - BIS guided vs. ETAG guided
 - 6041 patients randomized, 5713 evaluated
 - 7 patients in BIS group and 2 patients in ETAG group had intraop awareness.
 - Superiority of BIS not demonstrated compared to an inexpensive ETAG driven protocol for awareness


pEEG vs. EEG

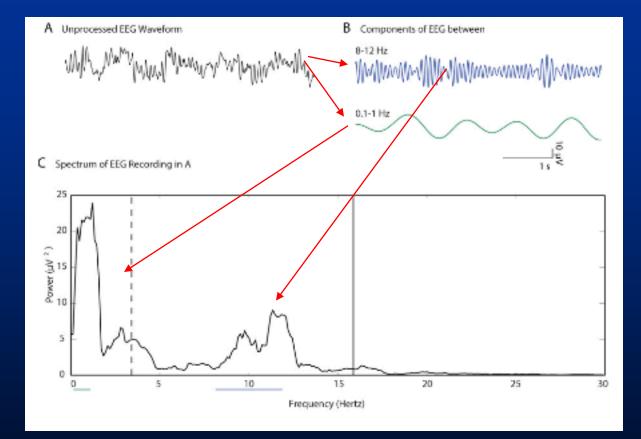
- Following B-Unaware and other studies demonstrating shortcomings for use in Awareness, interest in processed pEEG depth of anesthesia values diminished
- Processed EEG's still have value
 - Low BIS scores associated with poor outcomes
 - Useful for TIVA with propofol with wide dose ranges
- More emphasis placed on ease of use of unprocessed EEG components and potential clinical utility
- More to monitoring EEG than just awareness.
 - Depth of anesthesia
 - Specific outcomes
 - Increased understanding of underlying mechanisms of anesthetics



EEG – a modern approach

Purdon, Anesthesiology 2015

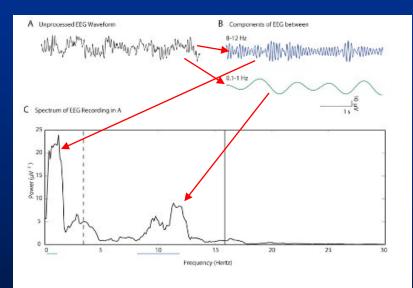
- Raw EEG waveforms are difficult to read multiple frequencies exist.
- Helpful to decompose the EEG into it's component waves



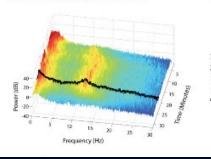
EMORY

UNIVERSITY SCHOOL OF MEDICINE

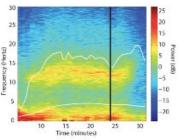
X

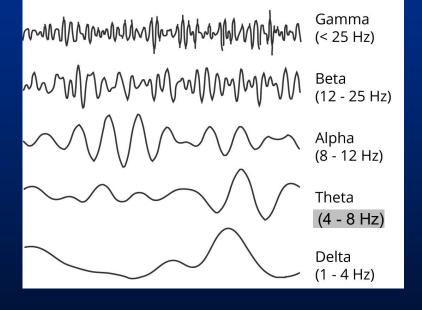


Purdon, Anesthesiology 2015



Spectrogram




D 3D Spectrogram (Compressed Spectral Array)

E Spectrogram (Density Spectral Array)

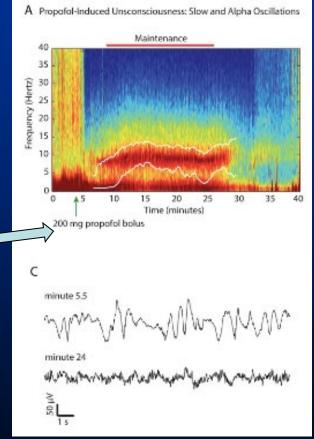
Purdon, Anesthesiology 2015

Spectrogram

- Simple
- Reflects true state of EEG for the practitioner
- Does not rely on proprietary algorithms

Additional unprocessed EEG values

- Suppression ratio (SR) % of time that the EEG was suppressed. Correlates with Burst Suppression
- Spectral Edge Frequency (SEF) the frequency below which 95% of total power of EEG exists
- Signal Quality Index (SQI) proportion of EEG data used in calculation of unitless indicies
- Electromyograph (EMG) measurement of muscle activity that can interfere with EEG signal

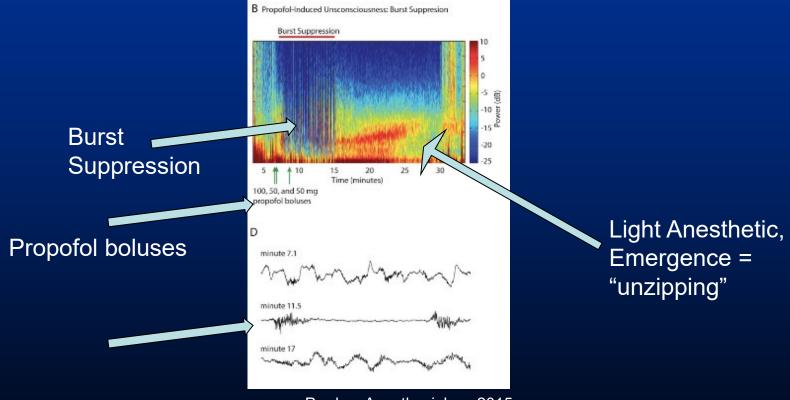


Propofol Spectrogram

- EEG moves from high frequency, low power to lower frequency, higher power
- Primarily 2 oscillation ranges
 - Delta

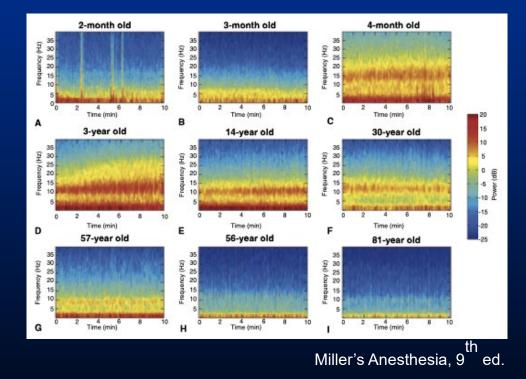
SCHOOL OF MEDICINE

- Alpha
- Mechanism of action
 - Enhance GABA inhibition in cortex, thalamus

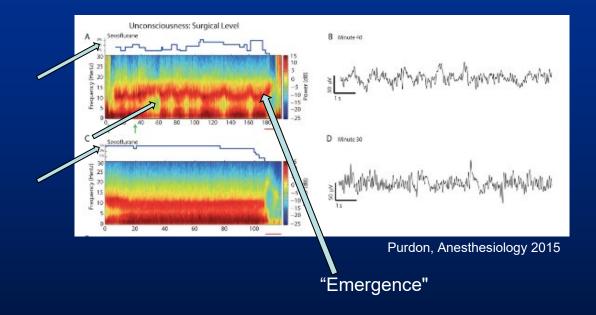


Purdon, Anesthesiology 2015

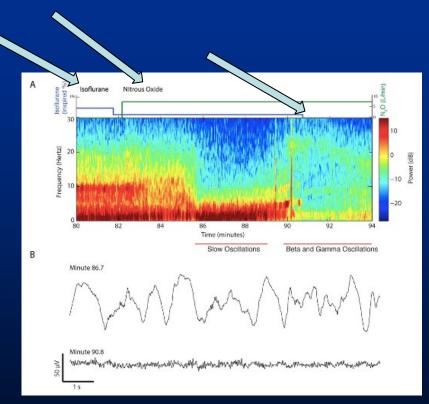
Propofol Spectrogram


Purdon, Anesthesiology 2015

Impact of age on propofol


- Age can impact spectrogram
- Infants up to 4 mos appear to only demonstrate slow delta
- Alpha seen in youth and adults up until ~ age 55
- Alpha power noticeably decreases after 55.

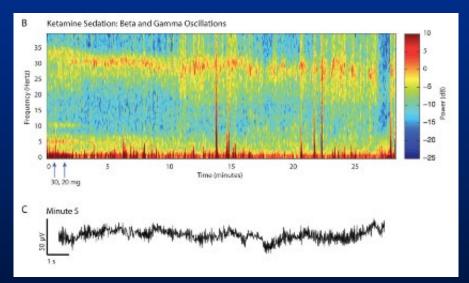
Potent Inhaled Anesthetics

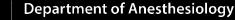

- Power at slow delta and alpha oscillations
- Mechanism partly GABA mediated
- With increasing MAC, increased power of theta oscillations

EMORY UNIVERSITY SCHOOL OF MEDICINE

Nitrous oxide

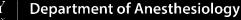
- Predominant beta and gamma oscillations
- Maybe related to a NMDA mechanism


Purdon, Anesthesiology 2015


Ketamine

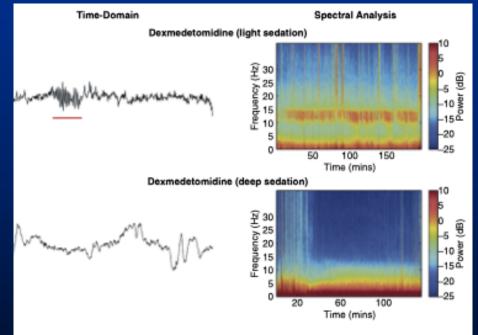
MEDICINE

- Predominant high beta, low gamma oscillations
- May see delta oscillations
- Traditionally thought to produce falsely elevated BIS scores
- NMDA inhibition
 - Increased neuronal activity and altered state


Purdon, Anesthesiology 2015

Spectrogram takeaway lessons

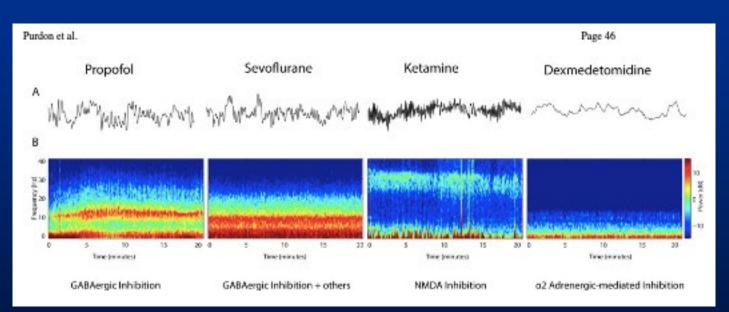
- Various anesthetic agents have distinct signatures
- Those signatures may not be well accounted for in pEEG
- The signatures may be related to mechanism of action
- pEEG also does not account for age
- Knowledge of signatures can aid in providing a more tailored anesthetic
 - Must apply in the clinical context
- Concordant with a scientific approach to clinical care.



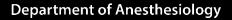
MEDICINE

Dexmedetomidine

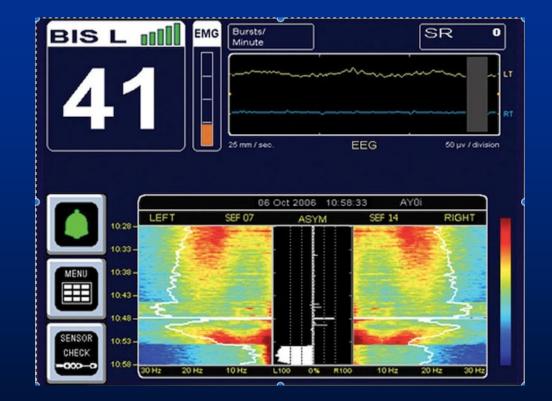
- Predominantly delta at higher doses. Some alpha at lower doses
- Traditionally produces low BIS scores although patient is easily arousable.
- Alpha 2 adrenergic agonist

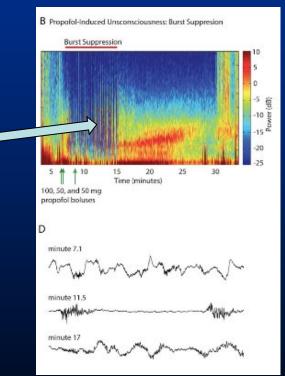

Purdon, Anesthesiology 2015

EMORY


UNIVERSITY SCHOOL OF MEDICINE

X,


Purdon, Anesthesiology 2015



Unprocessed EEG- clinical applications

- Burst suppression (BS)– periods of EEG suppression alternating with short bursts of high-amplitude activity.
- SR % of past minute EEG was suppressed
- BS associated with:
 - Deep anesthesia
 - Coma
 - Brain injury
 - Not seen during sleep
- Prior, small, mostly retrospective studies demonstrate association between BS and poor outcome
 - Mortality
 - Delirium

Purdon, Anesthesiology 2015

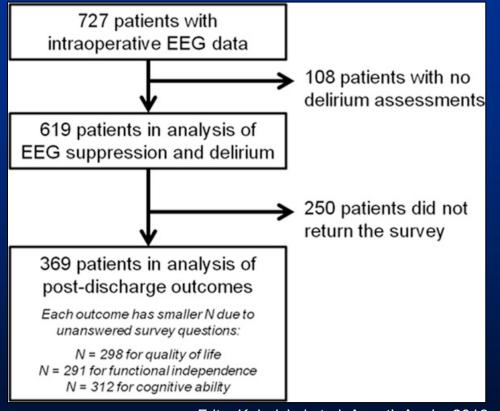
Delirium

- State of Impaired cognition
- Associated with poor outcomes
 - Poorer functional recovery
 - Prolonged ICU LOS
 - Increased HC costs
 - Potentially \$100b/yr
- Incidence after surgery 10-70%

Intraoperative Electroencephalogram Suppression Predicts Postoperative Delirium

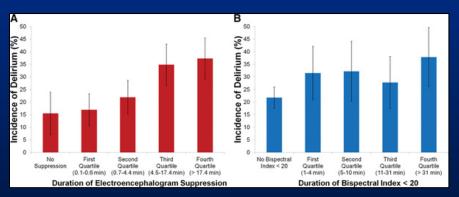
Bradley A. Fritz, MD,* Philip L. Kalarickal, MD,* Hannah R. Maybrier, BS,* Maxwell R. Muench, BS,* Doug Dearth, MD,* Yulong Chen, BA,* Krisztina E. Escallier, MD,* Arbi Ben Abdallah, PhD,* Nan Lin, PhD,† and Michael S. Avidan, MBBCh*

Anes Analg, 2016



Delirium and Burst Suppression

- Primary Aim determine if duration of intraoperative EEG burst suppression is associated independently with postoperative delirium
- Secondary aims:
 - Identify RF for prediction of delirium
- Methods:
 - Prospective observational cohort study
 - Usual anesthetic with volatile agents
 - Suppression ratio data from BIS sensor
 - Collected from monitors, EMR
 - Delirium assessment via CAM-ICU



SCHOOL OF MEDICINE

- Of 727 patients, 619 were assessed for delirium
- 26% overall experienced delirium
- Duration of SB correlated with likelihood of delirium
- 3rd Quartile: > 4.5 mins of burst suppression
 - 35% incidence of delirium

Results

EMORY UNIVERSITY SCHOOL OF MEDICINE

	Non-transformed model		Transformed model*	
Variable	Odds ratio (99% CI)	P	Odds ratio (99% CI)	Р
Age (per year)	1.01 (0.98-1.03)	0.37	1.00 (0.98-1.03)	0.69
Male sex	0.92 (0.69-1.23)	0.46	0.89 (0.67-1.19)	0.31
ASA physical status >3	0.81 (0.60-1.11)	0.08	0.80 (0.58-1.08)	0.06
Age-adjusted Charlson index (per unit)	1.10 (0.93-1.30)	0.15	1.09 (0.92-1.30)	0.18
Sensory impairment	1.04 (0.63-1.70)	0.83	1.03 (0.62-1.74)	0.85
Alcohol use >5 drinks per week	1.02 (0.62-1.66)	0.93	1.02 (0.62-1.68)	0.91
Surgery type				
Noncardiac	Reference		Reference	
Coronary artery bypass grafting	1.12 (0.62-1.66)	0.57	1.26 (0.76-2.11)	0.24
Open cardiac	0.95 (0.60-1.51)	0.77	1.03 (0.65-1.62)	0.89
Length of surgery (per minute)	1.00 (1.00-1.00)	0.65	1.00 (1.00-1.00)	0.61
Intraoperative ketamine use	0.70 (0.38-1.29)	0.13	0.71 (0.39-1.30)	0.15
Intraoperative opioid dose (per 1 morphine equivalent/kg increase)	1.08 (0.71-1.64)	0.65	1.05 (0.69-1.61)	0.76
Blood transfusion (dichotomous)*	-		1.82 (0.83-4.00)	0.05
Blood transfusion (per unit)*	1.29 (1.14-1.46)	< 0.0001	1.77 (1.07-2.94)*	0.004
Mean end-tidal anesthetic concentration (per 0.1 MAC unit)	0.66 (0.50-0.87)	0.0001	0.66 (0.50-0.88)	0.0002
ouration of electroencephalogram suppression (in minutes)	1.05 (1.003-1.103)*	0.0065	1.22 (1.06-1.40)	0.0002
MAC = minimum alveolar concentration.				

*Natural logarithm transformation was used to obtain linearity with the logit for blood transfusion and duration of electroencephalogram suppression. In addition, a dichotomous variable for blood transfusion was added because of the large number of patients who received no blood transfusion. ⁴In the untransformed model, odds ratio is for a 5-minute increase in duration of electroencephalogram suppression.

Results

SCHOOL OF MEDICINE

• Greater ETAG more likely to experience EEG suppression

	Odds of non-zero suppression ratio		Value of suppression ratio (gamma regression)	
Variable	Odds ratio (95% CI)	P	Location coefficient (95% CI)	Р
Age (per year)	1.0 (1.0, 1.0)	0.05	-0.01 (-0.02, 0.01)	0.23
Male sex	0.8 (0.6, 1.0)	0.08	-0.04 (-0.33, 0.24)	0.77
ASA physical status >3	1.2 (0.8, 1.6)	0.39	-0.01 (-0.29, 0.28)	0.96
Coronary artery disease	1.2 (0.9, 1.6)	0.32	-0.24 (-0.53, 0.05)	0.11
Chronic obstructive pulmonary disease	1.1 (0.8, 1.7)	0.52	0.05 (-0.31, 0.41)	0.77
Malignancy, excluding skin cancer	0.9 (0.6, 1.4)	0.71	0.03 (-0.36, 0.43)	0.88
Home sedative, opioid, or alcohol use	1.0 (0.7, 1.3)	0.80	0.01 (-0.27, 0.28)	0.97
Midazolam dose >2 mg	1.1 (0.8, 1.6)	0.58	0.09 (-0.26, 0.44)	0.61
Intraoperative opioid dose (per 1 morphine equivalent/kg increase)	0.5 (0.4, 0.6)	<0.0001	0.16 (-0.03, 0.36)	0.11
Nitrous oxide use	1.0 (0.6, 1.6)	0.89	0.01 (-0.47, 0.47)	0.99
Cardiac surgery	0.8 (0.5, 1.2)	0.28	0.21 (-0.22, 0.64)	0.33
End-tidal anesthetic concentration (per 0.5 MAC unit)	1.5 (1.5, 1.6)	< 0.0001	0.45 (0.41, 0.47)	< 0.0001

MAC = minimum alveolar concentration.

*Suppression ratio (SR) was predicted using a 2-part nonlinear mixed-effects model. The first part used a logistic likelihood function to predict the odds of a nonzero SR. The second part used a generalized gamma regression to predict the value of the SR.

Conclusions

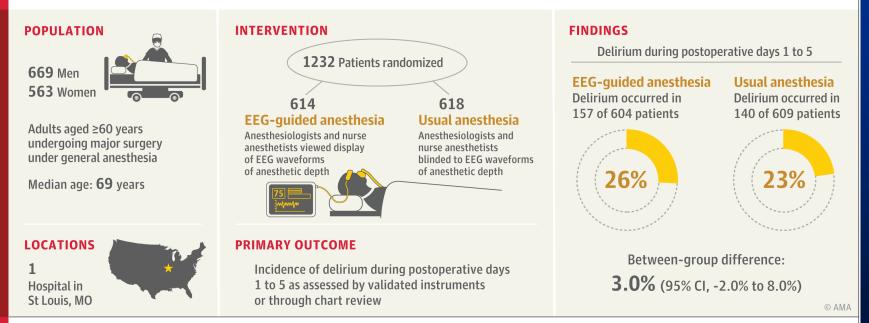
- Increased duration of EEG suppression associated with increased incidence of postop delirium
 - Increased concentrations of ETAG was a risk factor for burst suppression.
- Implications/ hypotheses
 - Suppression may indicate an excessive depth of anesthesia
 - Suppression may occur more often in patients with preop subclinical neural pathology
 - Suppression may be related to surgical factors
- Future studies should look adjusting anesthetic to reduce burst suppression and assess delirium.

JAMA | Original Investigation

Effect of Electroencephalography-Guided Anesthetic Administration on Postoperative Delirium Among Older Adults Undergoing Major Surgery The ENGAGES Randomized Clinical Trial

Troy S. Wildes, MD; Angela M. Mickle, MS; Arbi Ben Abdallah, PhD; Hannah R. Maybrier, BS; Jordan Oberhaus, BS; Thaddeus P. Budelier, MD, MSF; Alex Kronzer, BA; Sherry L. McKinnon, BS; Daniel Park, BS; Brian A. Torres, DNP; Thomas J. Graetz, MD; Daniel A. Emmert, MD, PhD; Ben J. Palanca, MD, PhD; Shreya Goswami, MBBS, DNB; Katherine Jordan, BS; Nan Lin, PhD; Bradley A. Fritz, MD; Tracey W. Stevens, MD; Eric Jacobsohn, MBChB, MPHE, FRCPC; Eva M. Schmitt, PhD; Sharon K. Inouye, MD, MPH; Susan Stark, PhD; Eric J. Lenze, MD; Michael S. Avidan, MBBCh; for the ENGAGES Research Group

- Patients randomized to usual care vs EEG guided care.
- Usual care utilized BIS dimensionless index
- EEG guided care- used waveforms, SEF, SR EMG, BIS index to decrease anesthetic to avoid excessive depth
 - Anesthetic adjusted to minimize Burst Suppression



Ŋ **JAMA** Network[∞]

QUESTION Does EEG-guided anesthetic administration decrease postoperative delirium incidence in older patients undergoing major surgery?

CONCLUSION This randomized clinical trial of older adults undergoing major surgery found that EEG-guided anesthetic did not reduce the incidence of postoperative delirium.

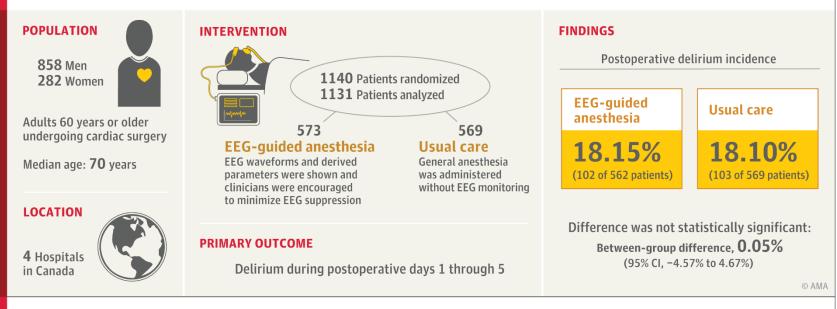
Wildes TS, Mickle AM, Abdallah AB, et al, for the ENGAGES research group. Effect of electroencephalography-guided anesthetic administration on postoperative delirium among older adults undergoing major surgery: the ENGAGES randomized clinical trial [published February 5, 2019]. JAMA. doi:10.1001/jama.2018.22005

Original Investigation

June 10, 2024

Electroencephalography-Guided Anesthesia and Delirium in Older Adults After Cardiac Surgery The ENGAGES-Canada Randomized Clinical Trial

Alain Deschamps, MD, PhD¹; Arbi Ben Abdallah, PhD²; Eric Jacobsohn, MD, ChB³; Tarit Saha, MD⁴; George Djaiani, MD⁵; Renée El-Gabalawy, PhD⁶; Charles Overbeek, MD¹; Jennifer Palermo, MD¹; Athanase Courbe, MD¹; Isabelle Cloutier, PhD⁷; Rob Tanzola, MD⁴; Alex Kronzer, BA²; Bradley A. Fritz, MD, MSCI²; Eva M. Schmitt, PhD⁸; Sharon K. Inouye, MD, MPH⁸; Michael S. Avidan, MBBCh²; for the Canadian Perioperative Anesthesia Clinical Trials Group


» Author Affiliations | Article Information

JAMA. 2024;332(2):112-123. doi:10.1001/jama.2024.8144

JAMA

QUESTION Among older patients undergoing cardiac surgery, does electroencephalography (EEG)-guided anesthetic administration to minimize EEG suppression decrease the incidence of postoperative delirium.

CONCLUSION EEG-guided anesthetic administration to minimize EEG suppression, vs usual care, did not decrease the incidence of postoperative delirium among older adults undergoing cardiac surgery.

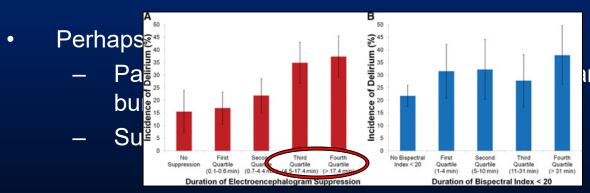
Deschamps A, Ben Abdallah A, Jacobsohn E, et al; for the Canadian Perioperative Anesthesia Clinical Trials Group. Electroencephalography-guided anesthesia and delirium in older adults after cardiac surgery: the ENGAGES-Canada randomized clinical trial. *JAMA*. Published online June 10, 2024. doi:10.1001/jama.2024.8144

SCHOOL OF MEDICINE

ENGAGES - Results

Table 2. Perioperative Care Measures

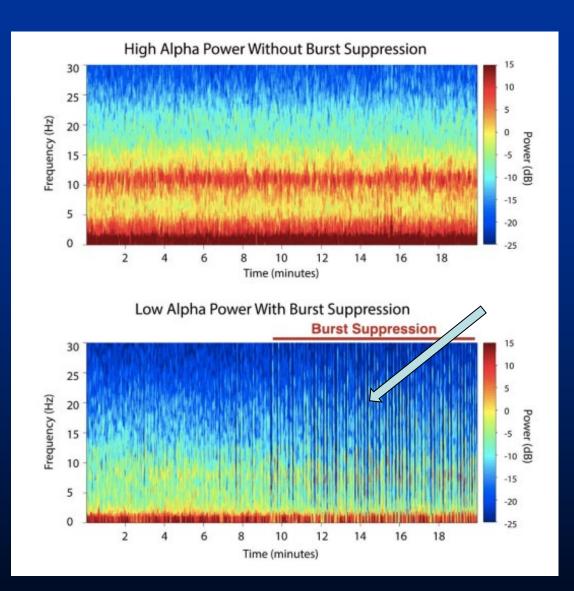
	Median (IQR)			
Measure	Guided	Guided Usual Care		
Perioperative medications of interest				
Received midazolam, No./total (%)	306/614 (49.8)	328/618 (53.1)	-3.2 (-8.9 to 2.5)	
Received nondepolarizing neuromuscular blocker, No./total (%)	570/614 (92.8)	560/618 (90.6)	2.2 (-1.0 to 5.5)	
Intraoperative neuromuscular blocker dose, mg/kg ^b	0.82 (0.55 to 1.22)	0.78 (0.50 to 1.15)	0.03 (-0.04 to 0.11)	
Intraoperative opioid dose, mg/kg ^c	0.65 (0.39 to 1.02)	0.58 (0.34 to 1.02)	0.06 (-0.02 to 0.13)	
Fentanyl dose, µg	400 (250 to 750)	350 (250 to 750)	50 (-4.45 to 104.45)	
Hydromorphone dose, mg	0.20 (0 to 1.50)	0.23 (0 to 1.25)	0 (-0.18 to 0.18)	
Intraoperative phenylephrine dose, mg	1.37 (0.20 to 5.14)	2.02 (0.30 to 5.90)	-0.63 (-1.22 to -0.03)	
ntraoperative measures				
Duration of anesthesia, min	264.5 (192 to 344)	264 0 (186 to 349)	0.5 (-16.7 to 16.7)	
End-tidal volatile agent concentration, MAC ^d	0.69 (0.62 to 0.77)	0.80 (0.71 to 0.86)	-0.11 (-0.13 to -0.10)	
Duration of BIS <40, min ^e	32 (9 to 81)	60 (19 to 132)	-28 (-38.0 to -18.0)	
Time with SR >1%, min ^r	7 (1 to 23)	13 (2 to 58)	-6 (-9.9 to -2.1)	
MAP, mean (SD), mm Hg	81.2 (8.26)	79.6 (7.68)	1.5 (0.63 to 2.42)	
Duration of MAP <60 mm Hg, min	7 (2 to 19)	7 (1 to 19)	0 (-1.7 to 1.7)	
Postoperative measures				
Admitted to PACU from OR, No./total (%)	326/614 (53.1)	339/618 (54.9)	-1.8 (-7.5 to 3.8)	
Time spent in the PACU, min	143 (103 to 183)	147 (109 to 186)	-3 (-12.4 to 6.4)	
Admitted to ICU, No./total (%)	322/614 (52.4)	297/618 (48.1)	4.4 (-1.3 to 10.0)	
Time spent in the ICU, d	3 (2 to 5)	3 (2 to 5)	0 (-1 to 1)	
Time spent intubated, min	237.0 (175 to 317)	231.5 (173 to 305)	5.5 (-23.0 to 16.0)	
Hospital length of stay, d	7 (5 to 11)	7 (5 to 11)	0 (-1 to 1)	

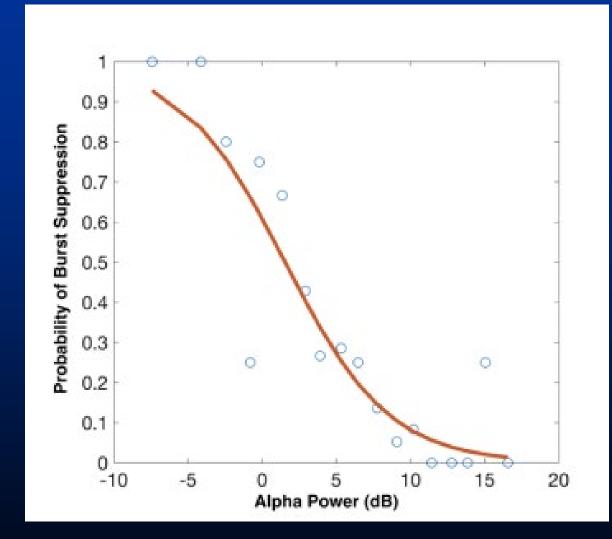

Wildes, Mickle et al, JAMA 2019

ENGAGES

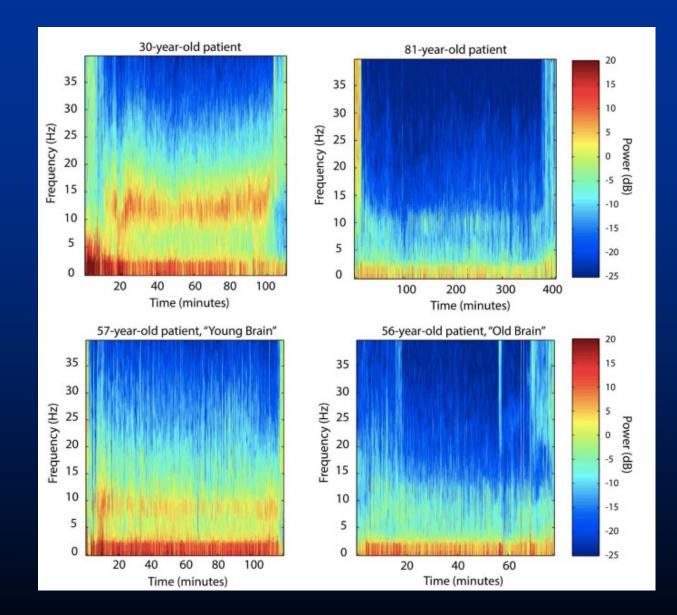
- These results do not support that reducing burst suppression via decreased anesthetic has an impact on delirium
- Additional trials in progress
- Duration of Burst suppression was long in both groups...
 - Deep vs. deeper groups?

inesthesia have more


A&A, November 2020


Technology, Computing, and Simulation

ORIGINAL CLINICAL RESEARCH REPORT


Low Frontal Alpha Power Is Associated With the Propensity for Burst Suppression: An Electroencephalogram Phenotype for a "Vulnerable Brain"

Yu Raymond Shao, MD, PhD,* Pegah Kahali, MD,†‡ Timothy T. Houle, PhD,† Hao Deng, MD, MPH,† Christopher Colvin, MHSc,† Bradford C. Dickerson, MD, PhD,§ Emery N. Brown, MD, PhD,†‡II¶ and Patrick L. Purdon, PhD†

Þ

Hemispheric Asymmetry on the Electroencephalogram during General **Anesthesia Responsive to Blood Pressure Manipulations**

Bryan Nycz MD, Andrew Chalhoub MD, Cassandra Dean MD, & Alexander Papangelou MD

Emory University, Department of Anesthesiology, Atlanta, Georgia, USA

BACKGROUND

- Electroencephalography (EEG) utility in anesthesiology
- Monitor depth of anaesthesia
- Reducing excessive depth of anesthesia 1,2
- Minimize post-operative cognitive dysfunction and delirium Evaluate pain signatures
- Detection of ischemia

CASE DESCRIPTION

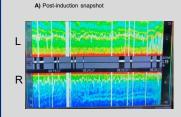
٠

- Loss of fast background frequencies, low-voltage irregular delta activity and/or total absence of activity
- Slowing begins at CBF less than 25-35 mL/100g/min

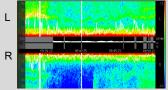
65-year-old man, with history of severe vascular disease including

Frontal EEG (Root with SedLine; Masimo Corporation, Irvine,

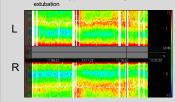
Anesthetic maintenance with a stable level of volatile anesthesia

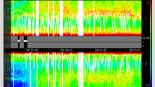

left first rib resection and left central venous angioplasty

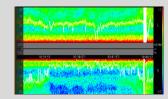
California) demonstrated hemispheric asymmetry


No new neurologic deficits post-operatively

complete left carotid occlusion, severe right carotid stenosis (70-99%), and ruptured abdominal aortic aneurysm status-post repair, who presented for


Ischemic (18 mL/100g/min) and infarction (10-12 mL/100g/min) thresholds


C) Cessation of vasoactive support with MAPs dropping to 65 mmHg


E) Immediately prior to and following

B) Addition of NE to maintain MAP ≥ 95 mmHg

D) MAP drop to 75 mmHg

Frontal EEG with Density spectral array. The top portion of the images represents the left frontal EEG output and the bottom portion represents the right frontal EEG output in a mirrored orientation. The x-axis is time (minutes) and y-axis is EEG frequency (Hz). Red colors correspond to the highest frequency (dB) power and blue represents little to no power with a color gradient defined on the far right of the image. The middle of the images depicts quantification of asymmetric brain activity (%). The white horizontal line within the spectrograms represent the spectral edge frequency where below 95% of the EEG power exists.

DISCUSSION

Focal spectrographic ischemia captured by the EEG in the setting of severe internal carotid artery (ICA) stenosis

Discordance coincided 'with decreased systemic pressures and corrected with elevated pressures at a constant level of volatile anesthesia

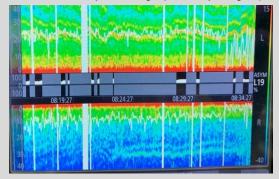
Dynamic cerebral autoregulation is impaired in severe ICA stenosis Higher likelihood of CBF dropping below critical thresholds

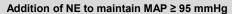
Multiple tools to monitor cerebral ischemia EEG, evoked potentials, near infrared spectroscopy (NIRS), transcranial doppler

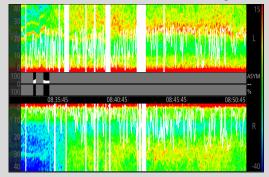
- Gold standard approach is debated
- Utilization of NIRS could have helped corroborate EEG findings Measure of brain tissue oxygenation/perfusion

CONCLUSION

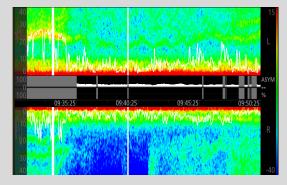
The recognition, interpretation, and reaction to atypical spectrographic patterns could help minimize poor outcomes in high-risk patients

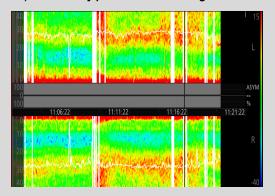

DSA with quantitative EEG data may simplify interpretation and utility by anesthesiologists to detect and guide management of hypoperfusion


REFERENCES & COI


Pardon PL, Sampson A, Pavone KJ, Brown EN. Clinical Electroencephalography for Anesthesiologista: Part I: Background and Basic Signatures. Areathesiologista: Part I: Background and Basic Signatures. 2011 UTL0201406 Discussion of the instances Association Care of Amorganic Materia 2012 DIST(1) Discussion of the instances Association Care of Amorganic Materia 2012 DIST(1) Discussion of the instances Association Care of Amorganic Materia 2012 DIST(1) Discussion of the instances Association Care of Amorganic Materia 2012 DIST(1) Discussion of the instances Association Care of Amorganic Materia 2012 DIST(1) Discussion of the instances Association Care of Amorganic Materia 2012 DIST(1) Discussion of Amorganic Materia 2012 DIST(1) Discussion Discuss

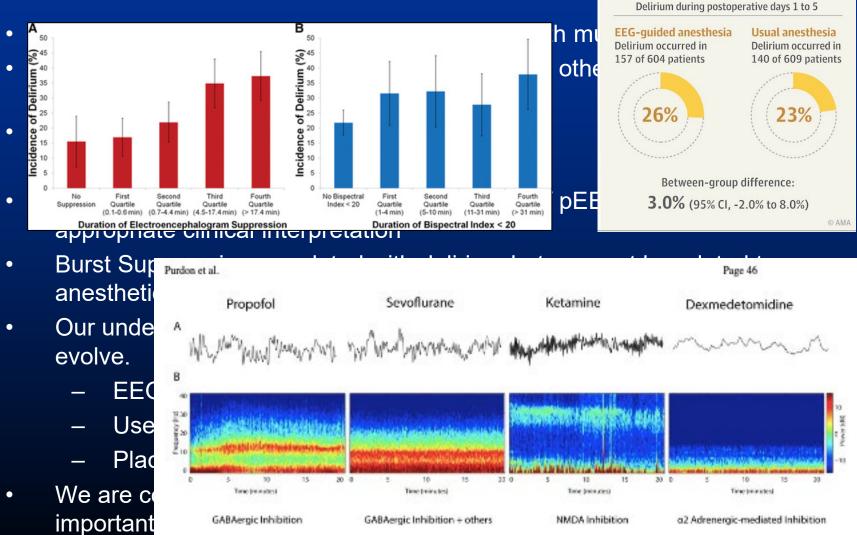
with permission, A Papengelou, 2021


Post Induction low power on right (bottom spectrogram)



Cessation of vasoactive support with MAPs dropping to 65 mmHg

E) Immediately prior to and following extubation



EMORY UNIVERSITY SCHOOL OF MEDICINE

FINDINGS

Conclusions

Further Learning

- eegforanesthesia.iars.org
- icetap.org
- Questions?

July 2024

Fostering a Positive Learning Environment

Teaching and Learning in the Clinical Environment

University of Michigan, Department of Anesthesiology

What is a Learning Environment We all work in learning environments.

Dynamic, co-constructed perceptions, experiences and behaviors

Tone of the educational climate or culture, and the *routine way people interact*.

Gruppen, L., Irby, D. M., Durning, S. J., & Maggio, L. A. (2018). Interventions designed to improve the learning environment in the health professions: ā scoping review. MedEdPublish, 7.

Why do we talk about Learning Environment

Classroom climate research -Thomas

1920

1936

 Behavior as a function of person and environment -Lewin

• Learning happens in the context of the person and their psychological environment

Clinical Learning environment focusCLER established in 2012

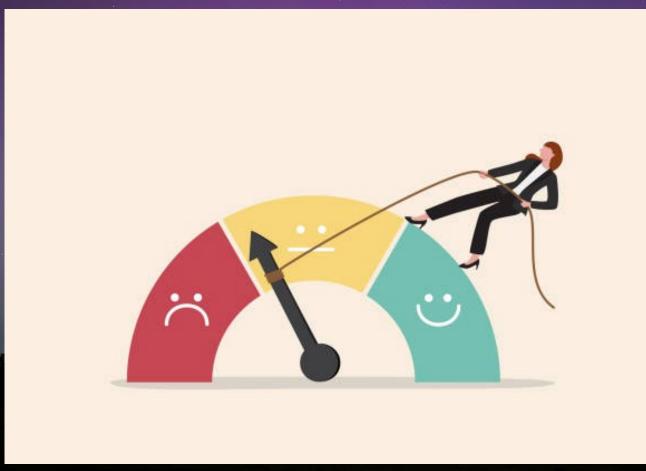
Fraser, B. J. (2014). Classroom learning environments: Historical and contemporary perspectives. In Handbook of research on science education, volume II (pp. 104-119). Routledge.

Learning Environment

Key Characteristics

Negative

- Power imbalance
- Shame & humiliation
- Mistreatment
- Fear


Positive

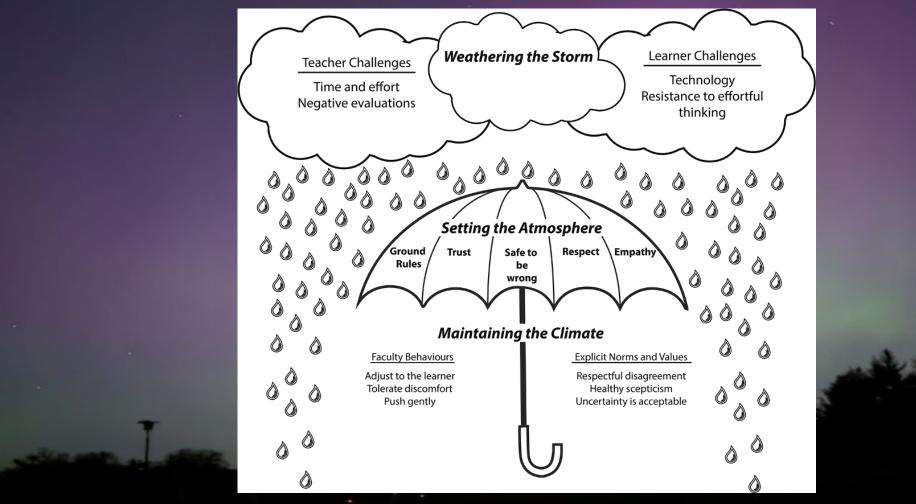
- Speak freely and honestly
- Vulnerability
- Treated fairly
- Trust

Bynum, W. E., & Haque, T. M. (2016). Risky business: psychological safety and the risks of learning medicine. Journal of graduate medical education, 8(5), 780-782. Hsiang-Te Tsuei, S., Lee, D., Ho, C., Regehr, G., & Nimmon, L. (2019). Exploring the construct of psychological safety in medical education. Academic Medicine, 94(11S), S28-S35.

https://www.youtube.com/watch?v=o3uf6xhfh-U

Learning Environment

Bynum, W. E., & Haque, T. M. (2016). Risky business: psychological safety and the risks of learning medicine. Journal of graduate medical education, 8(5), 780-782. Hsiang-Te Tsuei, S., Lee, D., Ho, C., Regehr, G., & Nimmon, L. (2019). Exploring the construct of psychological safety in medical education. Academic Medicine, 94(11S), S28-S35.


Clinical Environment

Jaffe, L. E., Lindell, D., Sullivan, A. M., & Huang, G. C. (2019). Clear skies ahead: optimizing the learning environment for critical thinking from a qualitative analysis of interviews with expert teachers. Perspectives on medical education, 8(5), 289-297.

Nordquist, J., Hall, J., Caverzagie, K., Snell, L., Chan, M. K., Thoma, B., ... & Philibert, I. (2019). The clinical learning environment. Medical teacher, 41(4), 366-372.

Optimizing Learning Environment

Jaffe, L. E., Lindell, D., Sullivan, A. M., & Huang, G. C. (2019). Clear skies ahead: optimizing the learning environment for critical thinking from a qualitative analysis of interviews with expert teachers. Perspectives on medical education, 8(5), 289-297.

Nordquist, J., Hall, J., Caverzagie, K., Snell, L., Chan, M. K., Thoma, B., ... & Philibert, I. (2019). The clinical learning environment. Medical teacher, 41(4), 366-372.

.

Optimizing LE Setting atmosphere

- Ground Rules:
 - Structure for learners
 - Clear expectations

- Process not answers
 - Critical thinking process
 - How did you come to decision

Trust

- Patience is key
- Time to respond and not react (Need a poker face!)

Jaffe, L. E., Lindell, D., Sullivan, A. M., & Huang, G. C. (2019). Clear skies ahead: optimizing the learning environment for critical thinking from a qualitative analysis of interviews with expert teachers. Perspectives on medical education, 8(5), 289-297.

Optimizing LE Maintaining the climate

- Pushing Learners
 - Give them a chance
 - Ask higher order questions

- Tolerate Discomfort
 - Sit on your hands!
 - Prioritize learning over production pressures

Learner Level

• Where is your learner, not where you think they should be

Jaffe, L. E., Lindell, D., Sullivan, A. M., & Huang, G. C. (2019). Clear skies ahead: optimizing the learning environment for critical thinking from a qualitative analysis of interviews with expert teachers. Perspectives on medical education, 8(5), 289-297.

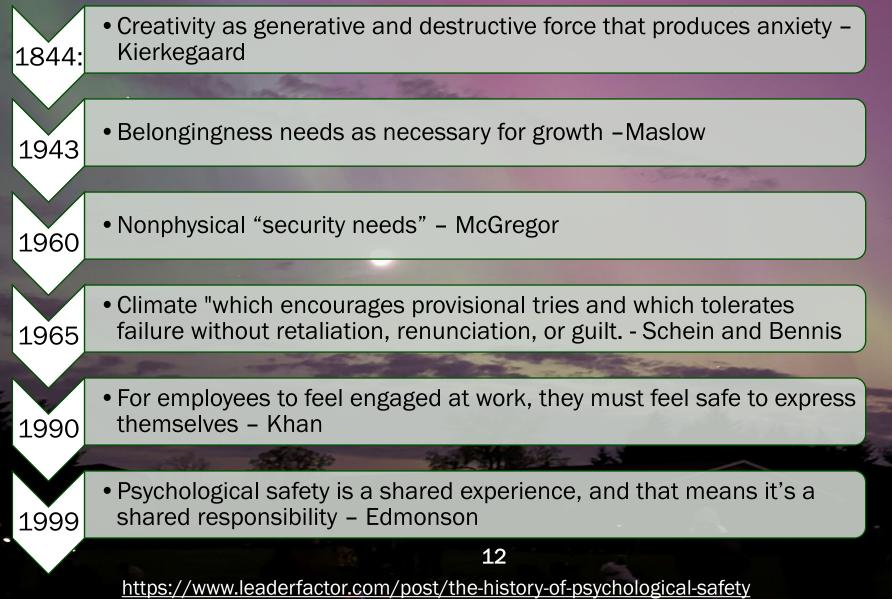
Optimizing LE

Weathering the storm

- Challenges
 - Time and Effort

- Negative evaluations
 - Stick to observations
 - Avoid assumptions
- Effortful thinking
 - Model it
 - Grant grace

Jaffe, L. E., Lindell, D., Sullivan, A. M., & Huang, G. C. (2019). Clear skies ahead: optimizing the learning environment for critical thinking from a qualitative analysis of interviews with expert teachers. Perspectives on medical education, 8(5), 289-297.


Psychological Safety

Modern workplace research has shifted to examine how to maximize PS and consequent benefits rather than just minimizing harmful activities.

Empowering Risk-taking

Biswas, B. D. (2014). Employee benefits design and planning, a guide to understanding accounting, finance, and tax implications. Pearson Education.

Psychological Safety

Unsafe Environment

Anxiety, Shame, Inadequacy Decreased engagement.

Easier to stay unnoticed

Biswas, B. D. (2014). Employee benefits design and planning a guide to understanding accounting, finance, and tax implications. Pearson Education.

Psychologically Safe vs Learning Environment

Are they at odds??

Psychologically Safe Environment

- Lack of expectations and assessment
- Focus on the self
- Trust is implicit

Learning Environment

Needs goals and assessments Comparison with others Entrustment as earned

Jung, K. B., Kang, S. W., & Choi, S. B. (2020). Empowering leadership, risk-taking behavior, and employees' commitment to organizational change: The mediated moderating role of task complexity. Sustainability, 12(6), 2340.

Expectations and Assessment Observation without Judgement

I define judgments—both positive and negative—as life-alienating communication.

-Marshall B Rosenberg

Rosenberg, M. B. (2015). Nonviolent communication: a language of life. 3rd edition. Encinitas, CA, PuddleDancer Press.

Relationship Building

Curiosity about the person and not just the work Long term view to preserve the relationship

Where do we find the energy?

Focus on the Self

Minimize Comparison

Show confidence in their ability I know you will be able to get this!

17

Trust

How can you convey trust without entrustment? Trust is maintained through honest interactions and openness to learn

Modeling Fallibility

I might mess this up! I need your help. Can you watch me?

Positive Learning Environments Psychological Safety

Origins of these concepts allow us to apply them to the work of teaching and learning in the healthcare setting with discernment

THANK YOU!

Lara Zisblatt

Email Lzisblat@med.umich.edu

LOCUM TENENS IN THE ANESTHESIA MARKETPLACE

PRESENTED BY RAD ZAMANI, CAA, MPH

O BJECTIVES

- Define locums tenens
- Outline history of locum tenens
- Discuss market trends
- Outline pros and cons of locum tenens

WHAT IS LOCUM TENENS?

Latin phrase "to take the place of"

• A **locum** is a person who temporarily fulfills the duties of another

Providers contract with agencies to perform services for a healthcare organization over a certain period of time

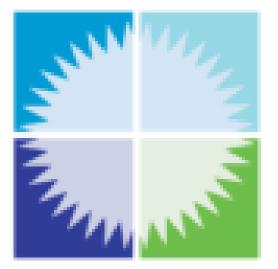
■ The provider works as a 1099 independent contractor and is paid through the staffing agency (pay rate), which is in turn paid by the healthcare facility (bill rate)

HISTORY OF LOCUM TENENS

- **1861-1865** Civil war doctors provide community care
- Native American Health
- West African War and Doctors Without Borders
- HSRI (Health System Research Institute) for rural health
- NALTO

F

- VA locum tenens utilization
- The Interstate Medical Licensure Compact
- Locum tenens provider & COVID


THE NATIONAL ASSOCIATION OF LOCUM TENEN ORGANIZATIONS (NALTO)

F

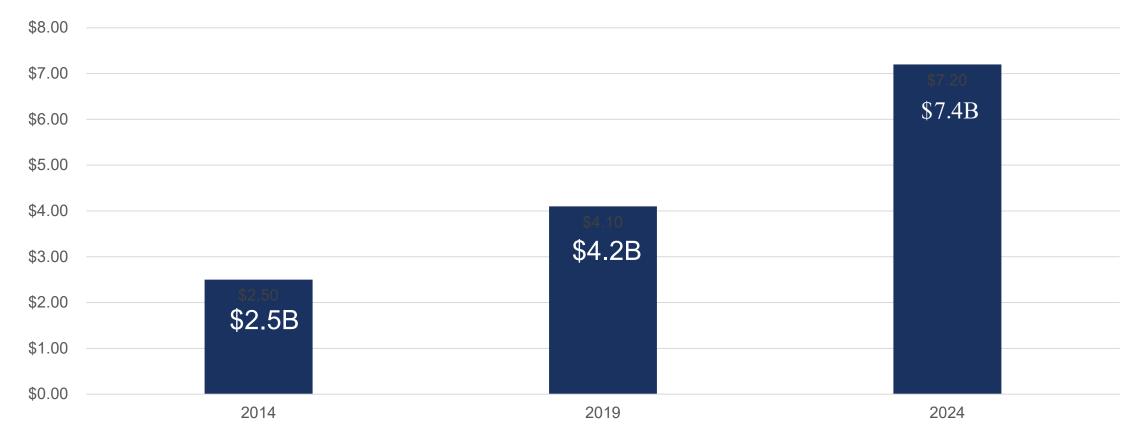
The National Association of Locum Tenens Organizations

INTERSTATE MEDICAL LICENSURE COMPACT

Interstate Medical Licensure Compact

Helping Physicians Since 2017

https://www.imlcc.org/


F

PRN LOCUM VS FULL TIME LOCUM

PRN provides the most flexibility, but also has no weekly guarantees and less premium pay FT Locum provides less flexibility, but also provides weekly guarantees and more premium pay

LOCUM TENENS MARKET SIZE

Market Size (Billions)

Source: Staffing Industry Analyst, Health Staffing

PERFECT STORM

DEMANDS

Ę

NORA AGING POPULATION

COVID CRNA program doctorate requirement EMR Private Equity

SUPPLY

PROVIDER DEMOGRAPHICS

• MDA

- CRNA
- CAA

#1 recruited healthcare professional

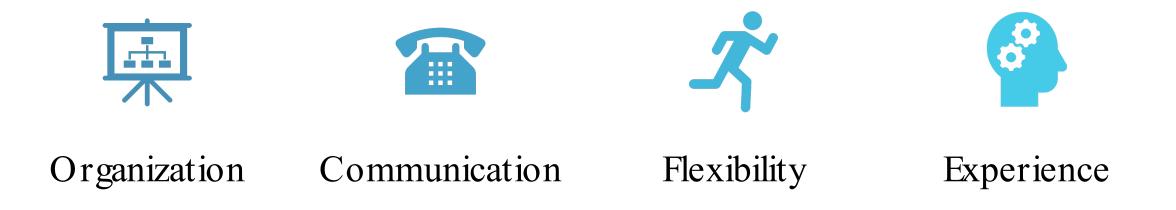
LOCUM MARKET TRENDS

Source: March 23, 2023, CHG Healthcare's <u>2023</u> <u>State of Locum</u> <u>Tenens Report</u>

90% Utilization

7% of US Physicians

PROS & CONS OF LOCUM TENENS


PRO S

- Freedom from practice bureaucracy
- Scheduling autonomy
- Practice setting variety
- Financial rewards
- Tax advantages
- Increased retirement contributions
- Travel
- Explore permanent placement opportunities without the commitment

CONS

- Temporary, contract based role
- No benefits
- Does not count towards PSLF Qualification
- Travel
- Exhausting application and credentialing process

ATTRIBUTES OF A "GOOD" LOCUM PROVIDER

ATTRIBUTES OF A "GOOD" LOCUMS AGENCY

Ę

Access

Experience

Support

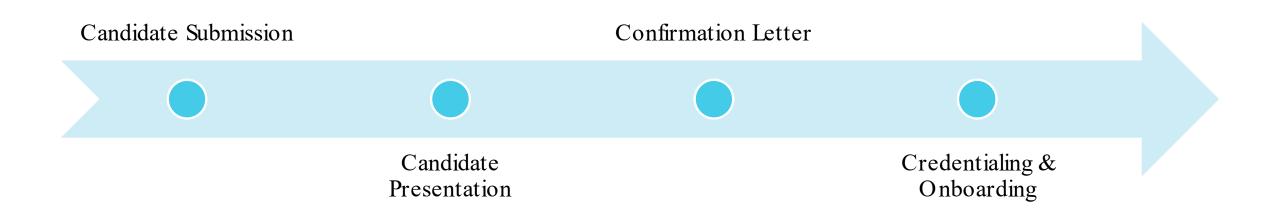
Opportunities

Vetting of sites

NALTO member

CHOOSING A LOCUM TENENS FIRM

1. Does the agency belong to NALTO®? All members are held to an <u>ethical code</u> so you can be sure they'll follow the highest standards of service.


2. Does the agency provide malpractice insurance for the physicians they place? Are they concerned with whether the client has coverage?

3. What is the agency's payroll history? Do they have the financial resources to pay their physicians regularly?

4. Is your recruitment representative accessible and available to answer your questions and help you through the locum tenens process?

5. Does the agency offer services to ensure that all details are taken care of when you arrive to work on day one? (ie, licensure, credentialing, hospital privileges, proper travel and housing arrangements)

AGENCY PROCESS FOR CANDIDATE PRESENTATION

AGENCY CONTRACTS

RESTRICTIVE COVENANTS

RELEASE LETTERS

CONVERSION SHARING CV FEES

Rad Zamani 6360 River Chase Cir NW, Atlanta, GA 30328 - 678-523-4544 - radzamani@gmail.com

QUALIFICATIONS

- Strong analytical skills with healthcare applications
- Proven leadership and organizational abilities
- Exceptional written and interpersonal communication skills
- Creative problem solver and effective team player

EDUCATION

Emory University School of Medicine Masters of Medical Sciences Program, 6/04 - 8/06

Rollins School of Public Health at Emory University M.P.H, Health Policy and Management, 8/01 - 12/02

Emory University Bachelor of Science in Neuroscience and Behavioral Biology, 8/96-5/00

EXPERIENCE

Harmony Anesthesia, LLC 11/14-Present

Founder/Independant Contractor wight quality and innovative staffing solutions Responsibilities: Develop relationships with Anesthesia practic while also providing personal professional anesthesia servi general, urological, and pediatric subspecialties.

Accomplishments: 100% client retention and 100 nth each year for the past 5 years.

Medical Center of Central Georgia 11/09-Macon, Georgia Staff Anesthetist

Responsibilities: Provide anesthesia care to p ents before, during, and after their surgical experience in the following surgical subspecialties: OBGYN, neonat cics, orthopedics, cardio/thoracic, ophthalmology, neurology, and general surgery.

Accomplishments: Received po from annual evaluations each and every year. Became member of LOD (Lead Anesthetist of the Da eam with responsibility of managing operating room schedule and staff once a week. Developed compete 🔊 and epidural anesthetics. in sr

07/07-11/09 Macon, Georgia Anesthesia Associates

Staff Anesthetist

Macon, Georgia

Atlanta, Georg

Atlant Corr Aratha, Geor (Loch's List)

Responsibiliti dical care to patients before, during, and after their surgical experience in the following surgical subs BGYN, pediatrics, orthopedics, cardio/thoracic, ophthalmology, neurology, and general surgery.

Accomplishments: Increased competency in anesthesia practice with coverage spanning two hospitals, an ambulatory care center, and a birthing unit. Became a frequently requested anesthetist among surgical staff members.

Anesthesia Associates of Macon 07/07-11/09

Staff Anesthetist

Responsibilities: Provide medical care to patients before, during, and after their surgical experience in the following surgical subspecialties: OBGYN, pediatrics, orthopedics, cardio/thoracic, ophthalmology, neurology, and general surgery.

Accomplishments: Increased competency in anesthesia practice with coverage spanning two hospitals, an ambulatory care center, and a birthing unit. Became a frequently requested anesthetist among surgical staff members.

Q & A

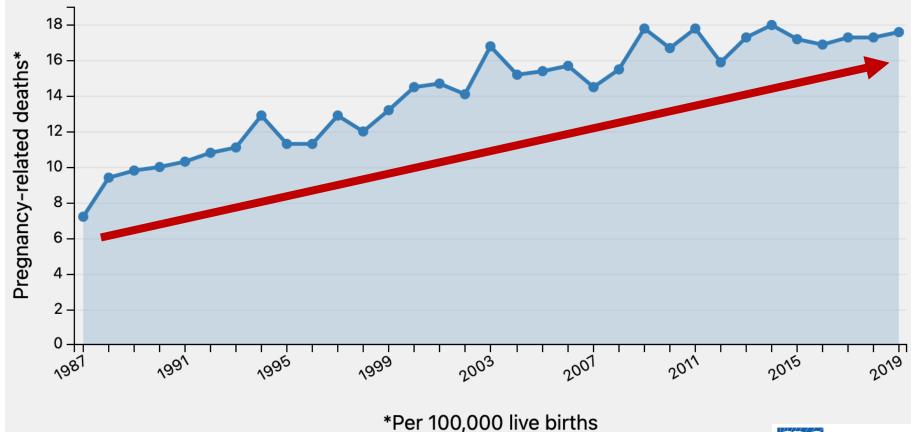
UPDATES IN PERIPARTUM HENORRHAGE Tailoring best practices to patient physiology and hospital resources

Elizabeth M. S. Lange, MD Associate Professor of Anesthesiology Obstetric Anesthesiology Section Chief – EUHM Emory University School of Medicine

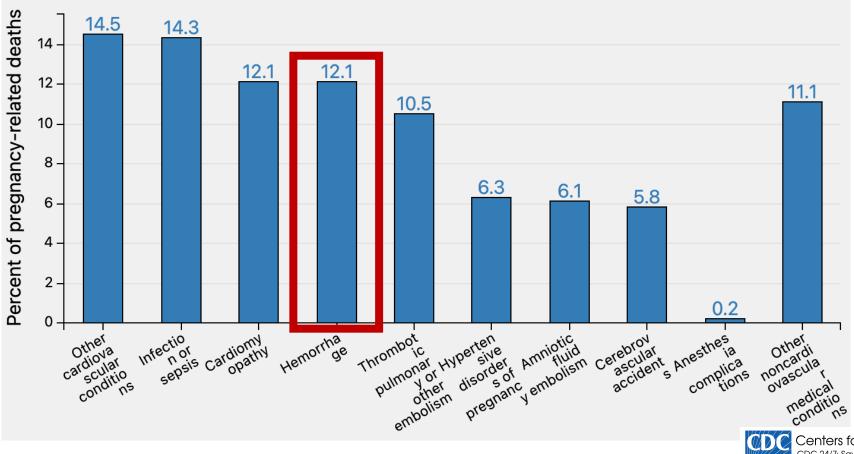
LEARNING OBJECTIVES

Review epidemiology of obstetric hemorrhage

Review the efficacy of second line uterotonics

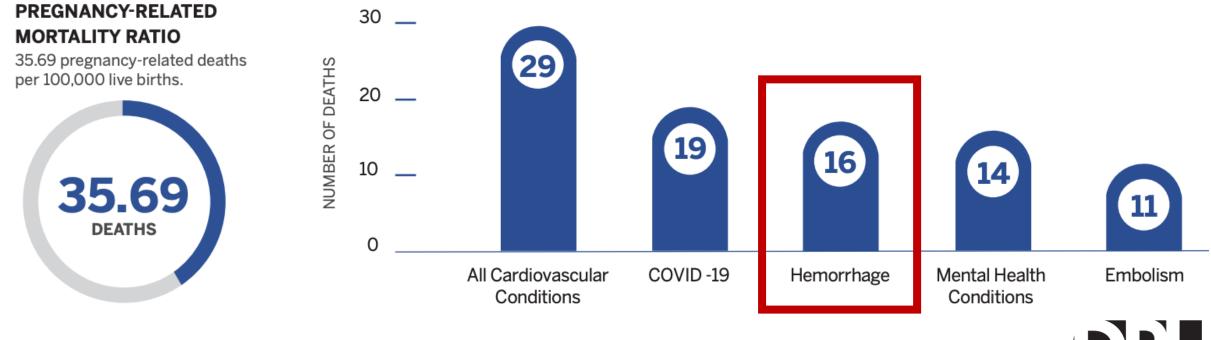

Analyze the evidence for tranexamic acid to treat postpartum hemorrhage and its use as a prophylactic agent

Understand pregnancy related changes in fibrinogen concentration


Identify common etiologies of obstetric hemorrhage associated with hypofibrinogenemia

Choose an optimal PPH response and resuscitation strategy

TRENDS IN PREGNANCY RELATED MORTALITY RATIOS IN THE US



CAUSES OF PREGNANCYRELATED DEATHS IN THE US: 2017 - 2019

Centers for Disease Control and Prevention CDC 24/7: Saving Lives, Protecting People™

MATERNAL MORTALITYIN GEORGIA: 2019-2021

GEORGIA DEPARTMENT OF PUBLIC HEALTH

PPHDIAGNOSIS

Obstetricians and Gynecologists

ACOG PRACTICE BULLETIN

Clinical Management Guidelines for Obstetrician-Gynecologists

NUMBER 183, OCTOBER 2017

(Replaces Practice Bulletin Number 76, October 2006)

Blood loss of \geq 1000mL or signs/symptoms of hypovolemia

- **Tachycardia** \bullet
- **Hypotension** ۲
- **Tachypnea** ۲
- Oliguria •

- Pallor
- Dizziness •
- Altered mental status

Estimated Blood Loss (mL)	Percent Blood Volume Lost (%)	Physiologic Changes	Heart Rate	Blood Pressure	Urine Output	Mental Status	Likelihood of Transfusion
0-750	10-15	↑ circulating catecholamines and fluid shifts usually compensate for blood loss	NC or mildly elevated	NC	NC	NC or mildly anxious	Transfusion usually not necessary
750-1500	15-25	↑ circulating catecholamines, peripheral vasoconstriction	< 100 bpm	NC or ↓ pulse pressure	Slight ↓ (20-30 mL/h)	Anxiety, fright, or hostility	Transfusion possible
1500-2500	25-40	Hypoperfusion, moderate shock	100-120 bpm	SBP 80-100 mm Hg; ↓ pulse pressure	↓ (5-15 mL/h)	Anxiety, confusion	Transfusion almost always necessary
>2000	> 40	Extreme hypoperfusion; severe shock	> 120-140 bpm	SBP < 80 mm Hg, may be undetectable via noninvasive blood pressure cuff	↓↓ Possibly complete anuria	Lethargy, loss of consciousness frequently observed	Massive transfusion possible

TABLE 1. Signs and Symptoms of Hypovolemic Shock⁶

bpm indicates beats per minute; NC, no change; SBP, systolic blood pressure.

CMQCC

F

California Maternal Quality Care Collaborative

PPH PREPAREDNESS

	ADMISSION & LABOR RISK FACTORS	
MONITOR FOR HEMORRHAGE Routine obstetric care	NOTIFY CARE TEAM Personnel that could be involved in response are made aware of patient status and risk factors	NOTIFY CARE TEAM MOBILIZE RESOURCES Consider anesthesia attendance at delivery
Low	Medium	High
No previous uterine incision	Prior cesarean(s) or uterine surgery	Placenta previa, low lying placenta
Singleton pregnancy	Multiple gestation	Suspected/known placenta accreta spectrum
≤ 4 vaginal births	> 4 vaginal births	Abruption or active bleeding (> than show)
No known bleeding disorder	Chorioamnionitis	Known coagulopathy
No history of PPH	History of previous postpartum hemorrhage	History of > 1 postpartum hemorrhage
	Large uterine fibroids	HELLP Syndrome
	Platelets 50,000 - 100,000	Platelets < 50,000
	Hematocrit < 30% (Hgb < 10)	Hematocrit < 24% (Hgb < 8)
	Polyhydramnios	Fetal demise
	Gestational age < 37 weeks or > 41 weeks	2 or more medium risk factors
	Preeclampsia	
	Prolonged labor/Induction (> 24 hrs)	
If low risk:	If medium risk: □ Order Type & Screen □ Review Hemorrhage Protocol	If high risk:

UNDERLYING ETIOLOGY OF PPH

79% of PPH due to uterine atony

Uterine Atony

- Retained Placenta (including accreta)
- Delayed (more than 24hr after delivery)
- Coagulopathy

Bateman, BT. Anesth Analg 2010; 110(5): 1368-73.

Agent	Dosing	Contraindications	Side Effects	
Oxytocin Pitocin	Infusion 6-36U/hr Protocols vary	None	 ↓SVR/↓BP Nausea/vomiting ST-segment depression Free water retention 	1 st line agent
Methylergonovine Methergine	200 mcg IM *May repeat x1 after 1h	-HTN -Preeclampsia -CAD	 HTN (arteriolar constriction) Nausea/vomiting Coronary vasospasm 	2 nd line agent
15-Methylprostaglandin F 2α Hemabate	250 mcg IM or IU *May repeat Q15 min up to 2mg	-Reactive airway disease (relative CI) -Pulmonary HTN -Hypoxemic pt	 Bronchoconstriction Nausea/vomiting Diarrhea Shivering 	2 nd line agent
Misoprostol <i>Cytotec</i>	800-1000mcg per rectum	None	 ↑Temperature Diarrhea Shivering 	Least effective 2 nd line agent

OXYIOCIN ERRORS

Table 1. Identified Risks Associated with Oxytocin Use

Inappropriate/unnecessary use in labor induction in low-risk patient populations

Lack of a standardized dosing regimen

Confusion with look-alike and sound-alike medications

Inappropriate use of brand names or unsafe abbreviations

Non-standardized or non-centralized preparation of oxytocin infusions

Use of multiple oxytocin infusion concentrations/preparations

Insufficient monitoring of beyond-use dates of pre-prepared solutions

Reliance on manually programmed infusion pumps without automated safeguards in place

Mix-ups with infusion tubing

Mix-ups with dosing/infusion rates

Use/availability of oxytocin in the direct patient care area without appropriate orders and communication among healthcare providers

International Medication Safety Network Oxytocin Special Interest Group 2023.

BEST PRACTICE 17:

Safeguard against errors with oxytocin use.

a) Require the use of standard order sets for prescribing oxytocin antepartum and postpartum that reflect a standard clinical approach in your organization for labor induction/augmentation and to control postpartum bleeding.

b) Standardize to a single concentration and bag size for both antepartum and postpartum oxytocin infusions (e.g., 30 units of oxytocin in 500 mL Lactated Ringer's solution).

c) Standardize how oxytocin doses, concentration, and rates are expressed. Communicate orders for oxytocin infusions in terms of the dose rate (e.g., dosage/time) and not by volume rate (volume/time) and align with the smart infusion pump dose error-reduction system (DERS).

d) Provide oxytocin in a standard ready-to-administer form. Boldly label both sides of the infusion bag to differentiate oxytocin bags from plain hydrating solutions and magnesium sulfate infusions.

e) Avoid bringing oxytocin infusion bags to the patient's bedside until it is prescribed and needed.

PROPHYLACTIC OXYTOCIN INFUSION FOR THE THIRD STAGE OF LABOR

		Pre-implementation $(n = 483)$	Post-implementation $(n = 418)$	P value
Total amount of oxyto	cin infused (U)*	20 [20-30]	12.5 [9–18]	< 0.001
Intraoperative postpart	um hemorrhage	21%	24%	0.21
Estimated blood loss (r	nL)	800 [700–900]	800 [750–900]	0.03
Methylergonovine ad	Our die ster terfe	alon whether all do a	ve e e e el teste l	0.38
dose (µg)	Oxytocin intu	ision protocol deci	reased total	0.39
15-methyl prostaglan		of intro on orotivo		0.74
dose (µg)	amount	of intraoperative of	DXytocin	0.74
Misoprostol administ	administara	d without increasi	ng the rote	0.31
dose (µg)	auministere	d without increasi	ng the fate	0.72
Any vasopressor adm	of DDH or r	need for 2 nd line ut	torotonics	0.15
Phenylephrine admin	ULLELI			0.33
dose [*] (µg)		100 [0-200]	0 [0-200]	0.35
Ephedrine administered	l	16%	11%	0.01
dose [*] (mg)		0 [0-0]	0 [0-0]	0.02
Epinephrine administer	ed	1%	0%	0.09
dose [*] (µg)		0 [0-0]	0 [0-0]	0.09

Lee, A. Int J Obstet Anesth 2014; 23(1): 18-22.

RULE OF THREES

	Allocation				
Allocated to "rule of threes" group: (n=30) • Received allocated intervention (n=30)	Allocated to s Received all 		Rule Group	Standard Care Group	P Value
Optional Bolus at Bolus: Carbopro	gonovine (0.2 mg/mL in 1 mL)	 [%] Saline Oxytocin dose (IU) ^{vtocin (3} Flushing ⁹ Nausea/vomiting EKG changes All side effects Blood loss (ml) Delta hematocrit Uterine tone Adequate at 3 min Adequate at 6 min 	$\begin{array}{c} 4.0 \pm 0.9 \\ 3 (10) \\ 7 (23) \\ 2 (7) \\ 11 (37) \\ 711 \pm 124 \\ 5.0 \pm 2.4 \\ \end{array}$ $\begin{array}{c} 27 (90) \\ 30 (100) \\ 29 (120) \end{array}$	8.4 ± 4.8 7 (23) 6 (20) 3 (10) 14 (47) 728 \pm 141 4.5 \pm 2.4 26 (87) 27 (90)	<0.0001 0.30 1.00 1.00 0.77 0.62 0.57 1.00 0.20
Dose: Misoprost Optional Buccal I		Adequate at 9 min Adequate at 12 min	30 (100) 30 (100)	30 (100) 30 (100)	1.00 1.00

First-line drugs

Oxytocin

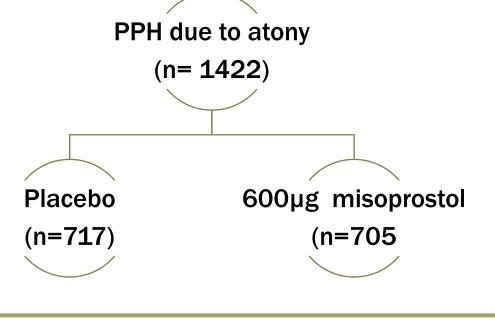
Elective caesarean section

Bolus 1 IU oxytocin; start oxytocin infusion at 2.5–7.5 $IU.h^{-1}$ (0.04–0.125 $IU.min^{-1}$).

If required after 2 min, give a further dose of 3 IU over \geq 30 s.

Consider second-line agent early in the event of failure of this regimen to produce sustained uterine tone.

Review the patient's clinical condition before discontinuing the infusion; this will usually be between 2 h and 4 h after commencement.

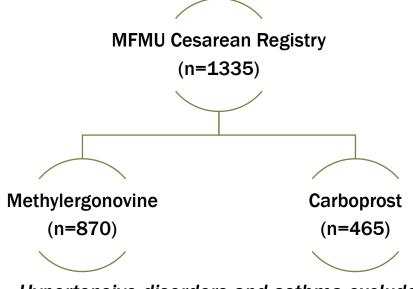

Intrapartum caesarean section

3 IU oxytocin over \geq 30 s; start oxytocin infusion at 7.5–15 IU.h⁻¹ (0.125–0.25 IU.min⁻¹).

Time after delivery	Vaginal Delivery	Cesarean Delivery without Labor	Cesarean Delivery with Labor
First hour (prophylaxis)	18units/hr	18units/hr	36units/hr until fascia closed, then 18units/hr
Second hour (prophylaxis)	9units/hr	9units/hr	9units/hr
If no IV (prophylaxis)	10U oxytocin IM		
If uterine atony (treatment)	 ↑ rate to 36units/hr for 1 hr, followed by 9units/hr for 1 hour 	 ↑ rate to 36units/hr for 1 hr, followed by 9units/hr for 1 hour 	 ↑ rate to 36units/hr for 1 hr, followed by 9units/hr for 1 hour

9units/hr = 150ml/hr, 18units/hr = 300ml/hr, 36units/hr = 600ml/hr. Oxytocin infusion standard as 30 units in 500mL of 0.9% saline

MISOPROSTOLAS 2ND LINE UTEROTONIC



Misoprostol offered **no benefit** for **treatment** of PPH.

	Misoprostol (n=705)	Placebo (n=717)	Relative risk (95% CI)
Primary outcome			
Blood loss of ≥500 mL within 60 min after randomisation	100 (14%)	100 (14%)	1·02 (0·79 to 1·32)
Secondary outcomes			
Blood transfusion after randomisation	103 (15%)	117 (16%)	0·89 (0·70 to 1·14)
Haemoglobin concentration of <80 g/L within 24 h post partum or need for blood transfusion*	121 (18%)	139 (20%)	0·89 (0·72 to 1·11)
Blood loss after randomisation			
Within 60 min (mL)	200 (100–306)	200 (100–340)	0 (0 to 0)†
≥1000 mL	9 (1%)	9 (1%)	1·02 (0·41 to 2·55)
Within 90 min (mL)‡	250 (120–440)	250 (120–450)	0 (–40 to 20)†
≥500 mL	149 (21%)	162 (23%)	0·93 (0·77 to 1·14)
≥1000 mL	17 (2%)	22 (3%)	0·78 (0·42 to 1·47)
Any uterotonic after randomisation	188 (27%)	203 (28%)	0·94 (0·79 to 1·11)
Maternal death	2 (<1%)	0	NA
Severe morbidity§	8 (1%)	10 (1%)	0.81 (0.32 to 2.00)

Widmer, M. Lancet 2010; 375: 1808-13.

METHYLERGONOVINE VS. CARBOPROSTAS 2ND LINE AGENT

Hypertensive disorders and asthma excluded

Hemorrhage-related morbidity: transfusion, uterine artery ligation or hysterectomy

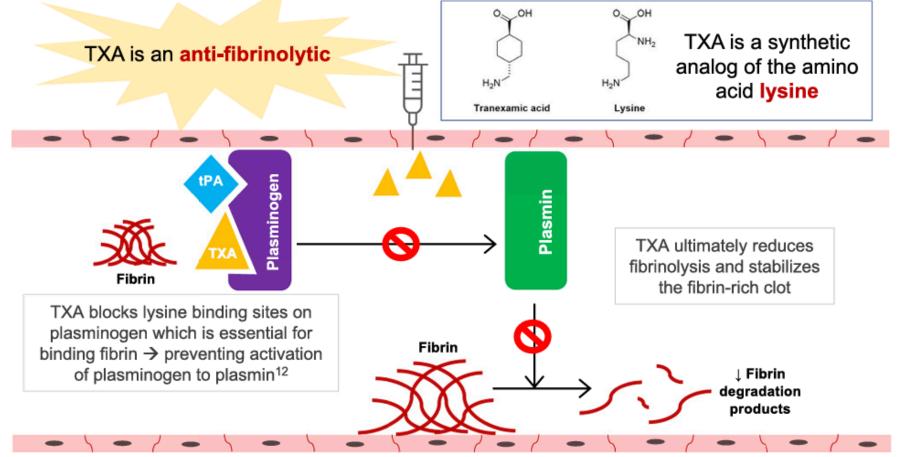
	Carboprost n (%)	Methylergonovine n (%)	Relative Risk [*] (95% CI)
Hemorrhage-related morbidity:			
Unadjusted	81 / 465 (17.4%)	76 / 870 (8.7%)	2.0 (1.5 – 2.7)
Propensity score matched	59 / 369 (16.0%)	34 / 369 (9.2%)	1.7 (1.2 – 2.6)
Sensitivity Analysis:			
Women who underwent IOL or spontaneous labor			
Unadjusted	46 / 310 (14.8%)	45 / 530 (8.5%)	1.7 (1.2 – 2.6)
Propensity score matched	31 / 237 (13.1%)	19 / 237 (8%)	1.6 (0.9 – 2.8)

Methylergonovine preferred 2nd line uterotonic in absence of contraindications.

Butwick, A. Am J Obstet Gynecol 2015; 212: 642.e1-7.

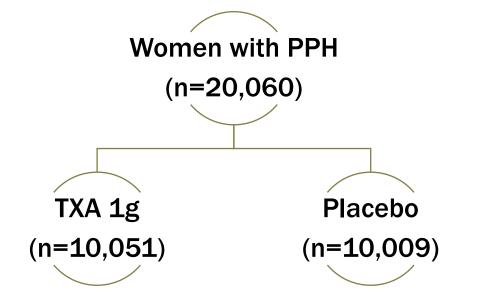
PROPHYLACTIC METHYLERGONOVINE

		Outcome	Oxytocin and Methylergonovine (n=80)	Oxytocin (n=80)	RR	Mean Difference	95% CI
Intrapartum standardized oxyt n=16)	tocin infusion	Primary Administration of additional uterotonic agents Methylergonovine	16 (20) 0	44 (55) 39 (49)	0.4	_	0.2–0.6
		15-methyl prostaglandin _{F2α} Misoprostol	14 (18) 8 (10)	29 (36) 5 (6)			
		Secondary Satisfactory uterine tone* [†] Postpartum hemorrhage ^{†‡}	64 (80) 28 (35)	33 (41) 47 (59)	1.9 0.6	_	1.5–2.6 0.4–0.9
IM Methylergonovine (n=80)	IM Placebo (n=80)	Blood transfusion [†] Quantitative blood loss (mL) ^{†§}	4 (5) 967±429	18 (23) 1,315±915.1	0.2	348	0.1–0.6 124–572
		Difference in preoperative and postoperative day 1 hemoglobin levels (g/dL) [†] Data are n (%) or mean±SD unless otherwise specific	2.4±1.1	2.9±1.0		0.6	0.2–0.9


* Assessed by delivering physician 4 minutes after placental delivery.

Prophylactic methylergonovine in addition to oxytocin reduces the need for additional uterotonics and PPH.

CALCIUM


Ę

TRANEXAMIC ACID: MECHANISM OF ACTION

Relke, N. Res Pract Thromb Haemost 2021; 5: e12546.

World Maternal Antifibrinolytic Trial

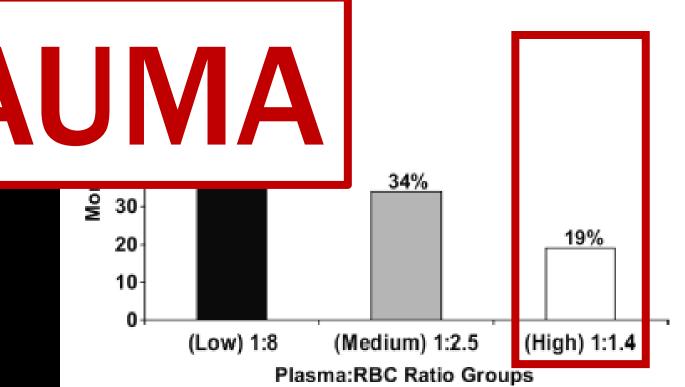
PROPHYLACTIC TXA

TXARELATED DEATH

SEVERE PPH

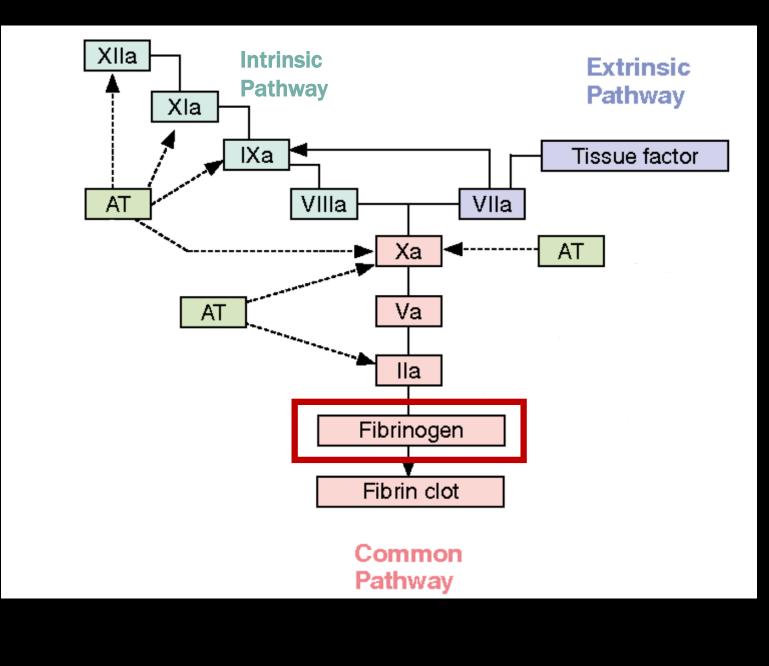
DEFINITION

- 4g ↓ HgB
- ≥ 4U PRBCS
- Require hemostatic interventions
- Death


ACTION PLAN

- Call for help
- Wide bore IV access
- Fluid resuscitation
- Vital signs monitoring
- Labs/POC testing/ABG
- Massive transfusion protocol

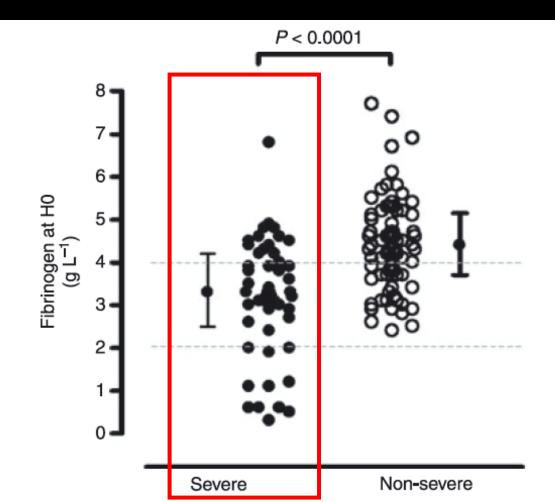
MASSIVE TRANSF XEDRAT RAUMA FI STRATEGIES


The Ratio of Blood Products Transfused Affects Mortality in Patients Receiving Massive Transfusions at a Combat Support Hospital

Matthew A. Borgman, MD, Philip C. Spinella, MD, Jeremy G. Perkins, MD, Kurt W. Grathwohl, MD, Thomas Repine, MD, Alec C. Beekley, MD, James Sebesta, MD, Donald Jenkins, MD, Charles E. Wade, PhD, and John B. Holcomb, MD

Ę

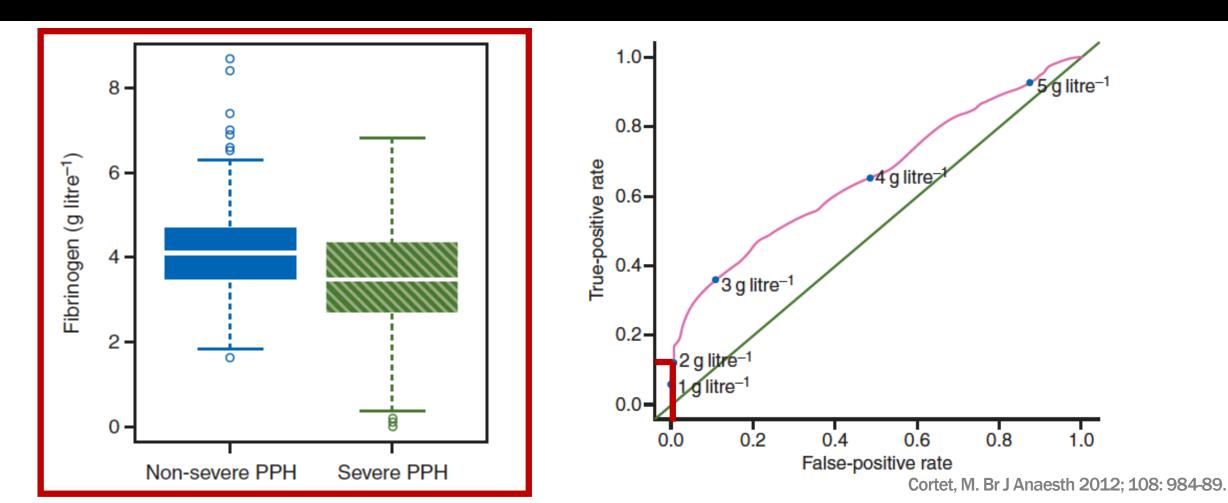
COAGULATION CASCADE

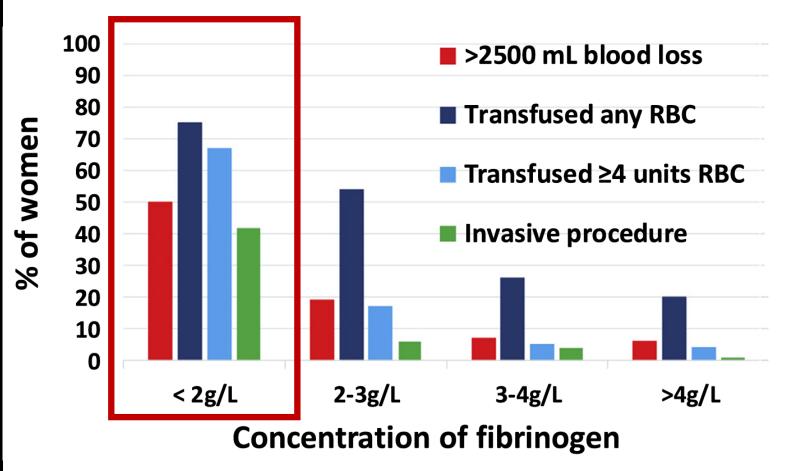

FIBRINGENINPREGNANCY

	Non-pregnant controls	1 st trimester	2 nd trimester	3 rd trimester
		Fibrinogen con	centration (g/l)	
Huissoud et al.[41]	3.3 [3.1–4.6]	4.0 [3.7-4.3]	4.6 [4.3-4.8]	5 [4.4–5.8]
Adler et al.[42]	2.2 (0.4)	NA	NA	3.79 (0.78)
Uchikova et al.[43]	2.6 (0.6)	NA	NA	4.7 (0.7)
Cerneca et al.[44] ^a	3.7 (0.8)	4.1 (0.7)	4.6 (0.8)	5.6 (1.1)
Oliver et al.[45] ^a	NA	2.6 (0.3)	3.0 (0.2)	3.5 (0.2)
Manten et al.[46] ^b	NA	3.5 (NA)	3.79 (NA)	5.1 (NA)
Choi et al.[47]	3.3 (0.5)	3.3 (0.5)	3.8 (0.5)	4.4 (0.5)

Steady increase in fibrinogen through pregnancy from baseline.

Butwick, A. Curr Opin Anesthesiol 2015; 28(3): 275-84.


FIBRINGEN AS AMARKER OF SEVERE PPH


A 1g/L decrease in fibrinogen, had a 2.6fold increased odds of severe PPH

Charbit, B. J Thromb Haemost 2007; 5: 266-73.

IS THERE A MAGIC FIBRINOGEN VALUE?

DECREASED FIBRINOGEN ASSOCIATED WTH INCREASED MORBIDITY

Collins, PW. Blood 2014: 124 (11): 1727-36

Collins, PW. Int J Obstet Anesth 2019; 37: 106-17.

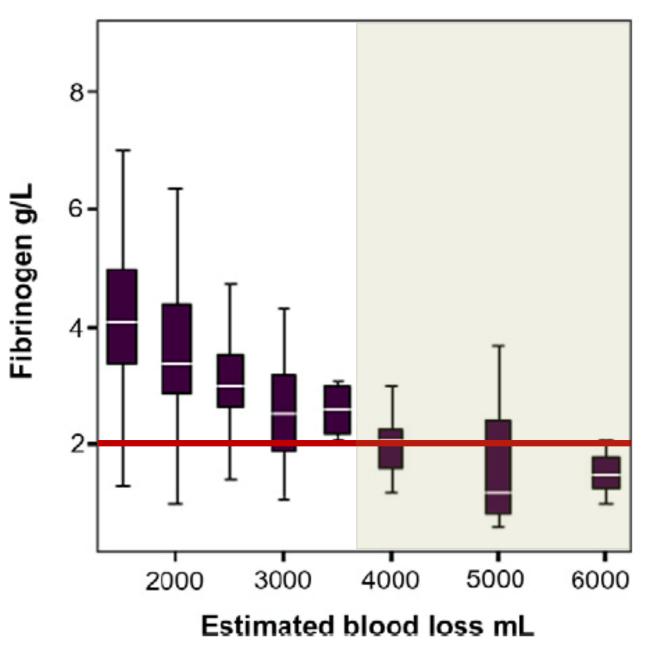
FIBRINGEN IN OBSTETRIC HEMORRHAGE

Table 1 Studies investigating the association between fibrinogen and progression of postpartum haemorrhage

Study	Ν		Study design		Fibrinog	en g/L	
		Time of fibrinogen assay	Outcome defining progression of PPH	Descriptive statistic reported	No progression of PPH	Progression of PPH	ROC AUC (95% CI)
Charbit ³¹	129	Infusion of uterotonic after manual exploration of uterus	Invasive procedure to control bleeding, fall in Hb \geq 4 g/L or \geq 4 units RBC	Median (IQR)	4.4 (3.7–5.1)	3.3 (2.5–4.2)	0.75 (CI NR) p <0.000
Cortet ³²	738	Diagnosis of PPH	Invasive procedure to control bleeding, fall in Hb \geq 4 g/L, \geq 4 units RBC or admission to ITU	Mean (SD)	4.2 (1.2)	3.4 (0.9)	0.66 (0.64–0.68)
Poujade ⁵⁵	98	Variable time before embolisation	Success of radiological embolisation	Mean (SD)	2.9 (1.3)	1.8 (0.9)	NR
Gayat ³⁴	257	Variable time before procedure	Invasive procedure to control bleeding	Median (IQR)	2.7 (2.1–3.5)	1.8 (1.1–2.5)	$0.83 \ (\pm 0.03)^*$
de Lloyd ³³	240	First clinical concern during PPH	\geq 2500 mL blood loss	Mean (SD)	4.4 (1.1)	3.1 (1.0)	0.85 (0.78–0.93)
Collins ¹⁴	346	1000–1500 mL blood loss	Transfusion of ≥ 8 units allogeneic blood products	Median (IQR)	3.9 (3.2–4.5)	2.1 (1.8–3.4)	0.82 (0.72–0.92)
Simon ³⁵	797	Before bleeding started	PPH requiring manual uterine exploration, RBC transfusion or fall in Hb $\geq 2 g/I$	Mean (SD)	4.9 (1.0)	4.3 (1.3)	NR

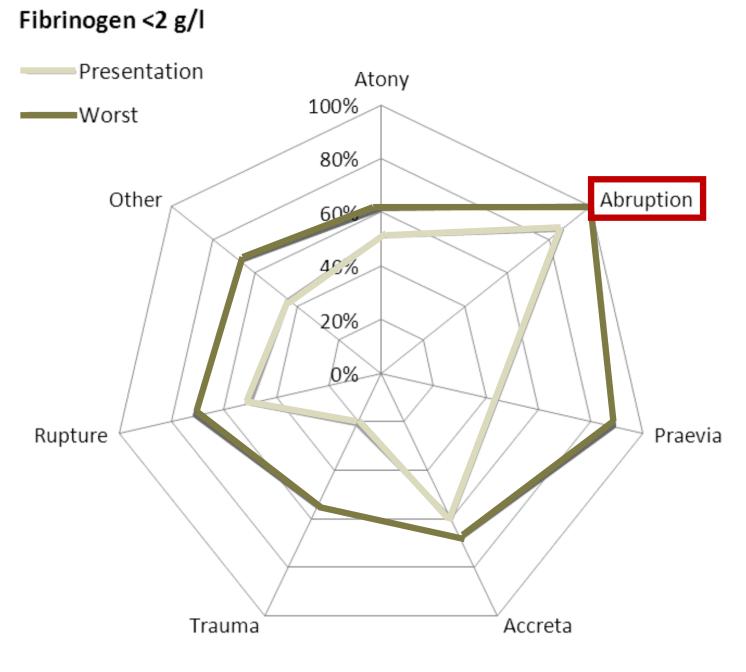
in Hb $\geq 2 \text{ g/L}$

Collins, PW. Int J Obstet Anesth 2019; 37: 106-17.


UNDERLYING ETIOLOGY OF PPH

Uterine Atony

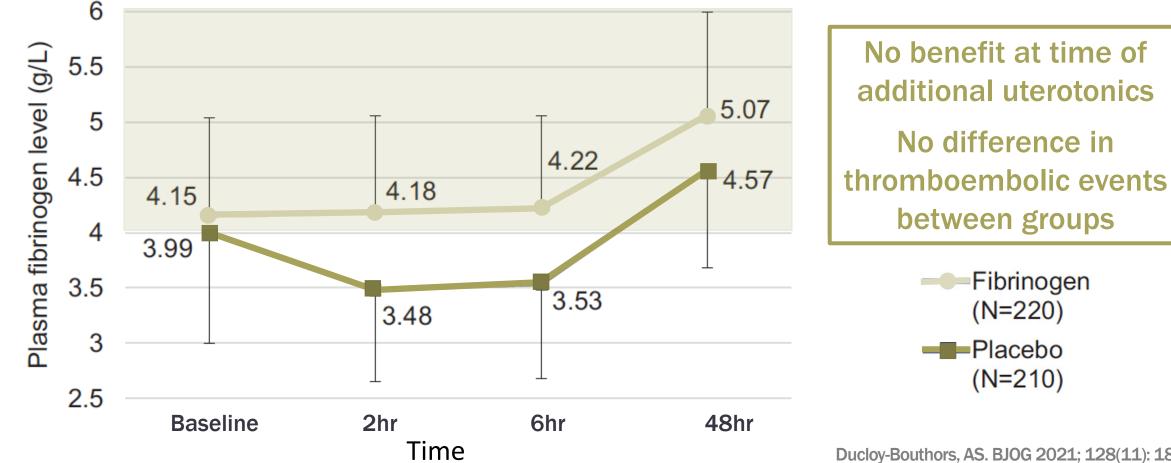
- Retained Placenta (including accreta)
- Delayed (more than 24hr after delivery)
- Coagulopathy


Bateman, BT. Anesth Analg 2010; 110(5): 1368-73.

FIBRINGEN ANDBLOOD LOSS

de Lloyd, L. Int J Obstet Anesth 2011; 20: 135-41.

NOTALL HEMORRHAGE IS ALOW FIBRINOGEN STATE

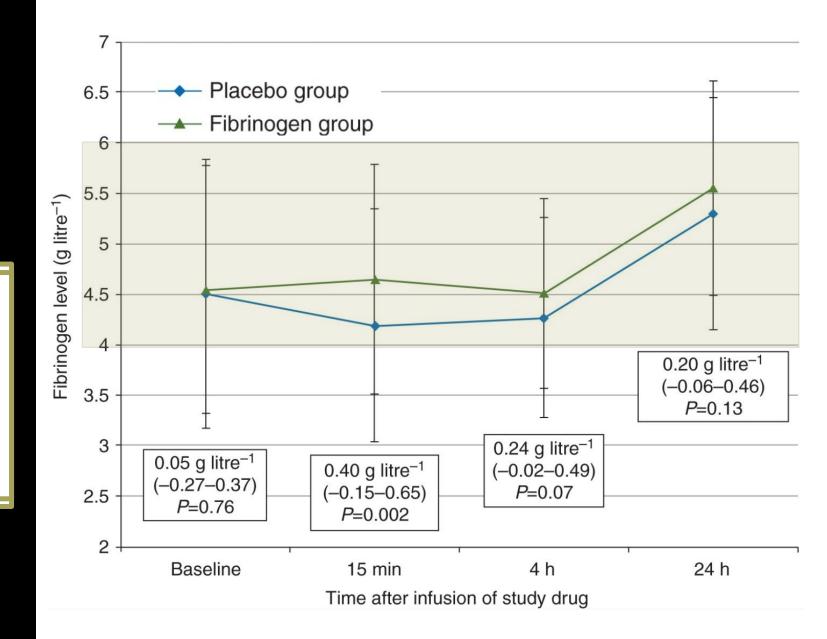


Green, L. Br J Haemotol 2016; 172: 616-24.

WHEN SHOULD FIBRINGEN REPLACEMENT BEGIN?

P

ATTIME OF ADDITIONAL UTEROTONICS

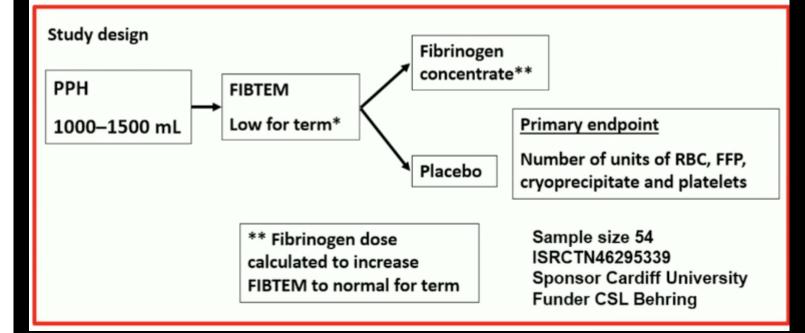


Ducloy-Bouthors, AS. BJOG 2021; 128(11): 1814-23.

ATTIME OF HEMORRHAGE

No evidence for pre-emptive treatment with fibrinogen in PPH to reduce transfusion

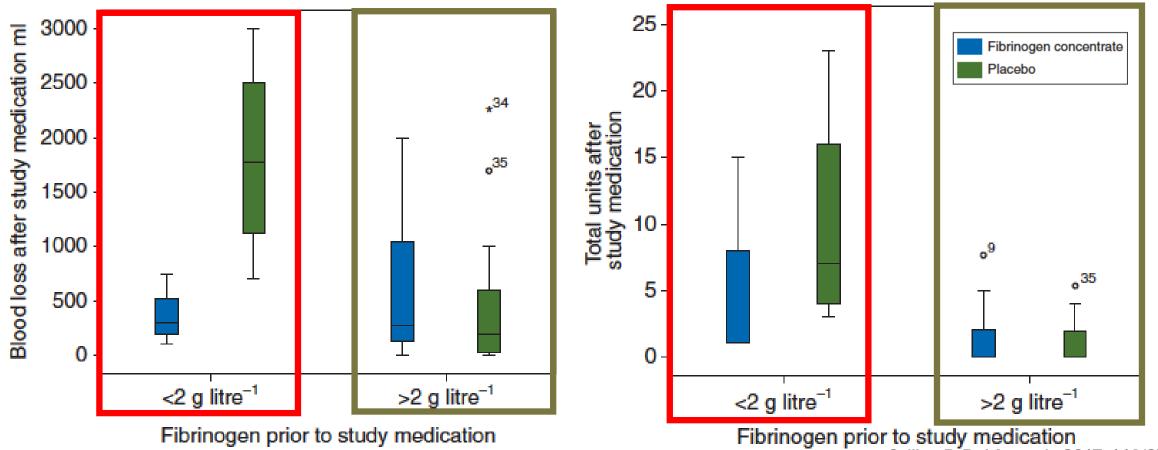
No difference in thromboembolic events



Wikkelso. Br J Anaesth 2015; 114(4): 623-33.

ATTME OF HEMORRHAGE WITH DEFINED POC VALUE

Fibrinogen concentrate versus placebo for treatment of postpartum haemorrhage: A multicentre, prospective, double blind randomised control trial


Collins, B. Br J Anaesth 2017; 119(3): 411-21.

ATTIME OF HEMORRHAGE WITH DEFINED POC VALUE

	Fibrinogen (n=28)	Placebo (n=27)	Unadjusted* treatment effect estimate (95% CI)	
Allogeneic blood products transfused between study	v drug completion and date o	of discharge		
No allogenic products transfused, n (%)	13 (46.4)	12 (44.4)	0.92 [†] (0.32–2.67)	0.88
RBC transfusions				
Total number	37	38		
Mean transfusion rate (total transfusions/n)	1.32	1.41	0.94 [‡] (0.44–2.02)	0.87
Median (25th–75th centile)	1 (0–2)	1 (0–2)		
Range	0–9	0-8		
No RBC transfused, n (%)	13 (46.4)	13 (48.1)		
FFP transfusions				
Total number	18	33		
Mean transfusion rate (total transfusions/n)	0.64	1.22	0.53 [‡] (0.13–2.16)	0.37
Median (25th–75th centile)	0 (0–0)	0 (0–2)		
Range	0-4	0–8		
No FFP transfused, n (%)	22 (78.6)	19 (70.4)		
Platelet transfusions				
Total number	2	3		
No platelets transfused, n (%)	27 (96.4)	24 (88.9)	NA	
Cryoprecipitate transfusions				
Total number	1	1		
No cryoprecipitate transfused, n (%)	27 (96.4)	26 (96.3)	NA	

Collins, B. Br J Anaesth 2017; 119(3): 411-21.

REPLACEMENTIN SETTING OF HYPOFIBRINGENEMIA

Collins, B. Br J Anaesth 2017; 119(3): 411-21

FIBRINGEN REPLACEMENT STRATEGIES

Fresh Frozen Plasma	Cryoprecipitate	Fibrinogen Concentrate
Liquid portion of whole blood	Concentrated plasma product	Pasteurized concentrate
Non-pregnant donor	Pooled donor	From pooled human plasma
Contains all clotting factors	Contains fibrinogen, VIII, XIII, vWF	Contains fibrinogen
[Fibrinogen] 2g/L	[Fibrinogen] 15g/L	[Fibrinogen] 1g / 50mL
Must be ABO compatible	Not type specific	NA
Can be defrosted in 2-3 min	Defrosted 20-30 min	Mixed in 5-8 min
Used for coagulopathy	Used for fibrinogen deficiency	Congenital hypofibrinogenemia
Commonly employed in fixed ratio transfusion	Widespread use in US, shortages in COVID pandemic	Used any may European centers for fibrinogen replacement in PPH

SHOCKPACKVS. POC WITHFIB CON

Prospective observational study

Inclusion Criteria:

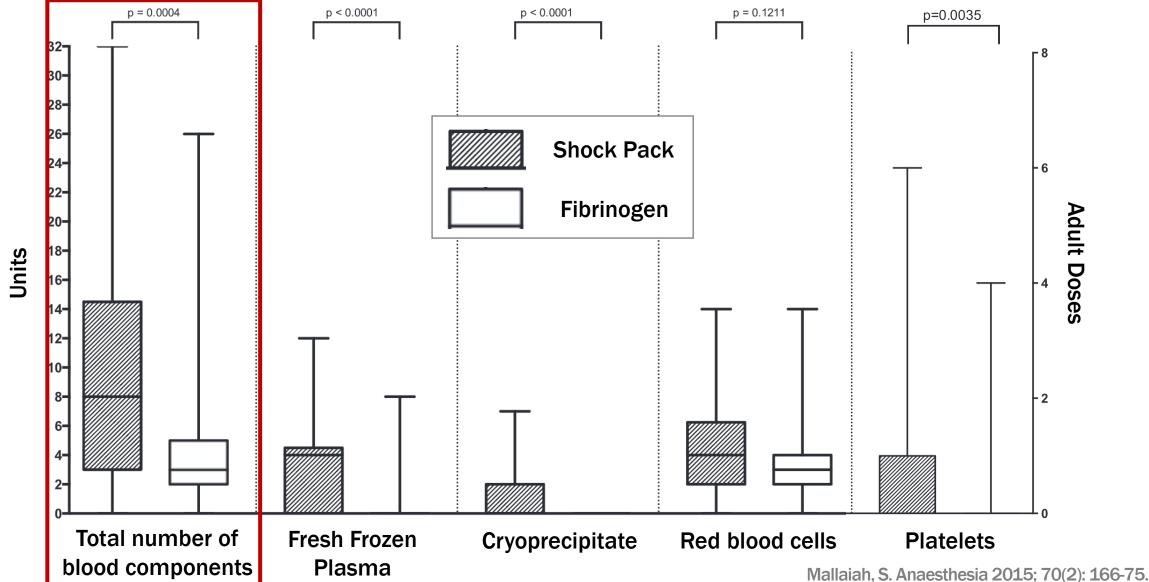
EBL > 1500

AND

FibTEM A5 < 12 mm

"Shock Pack" Phase (n=42)

• Early resuscitation with:


- 4U PRBC
- 4U FFP
- 1U platelets
- 2U cryoprecipitate if fibrinogen < 2g/dL

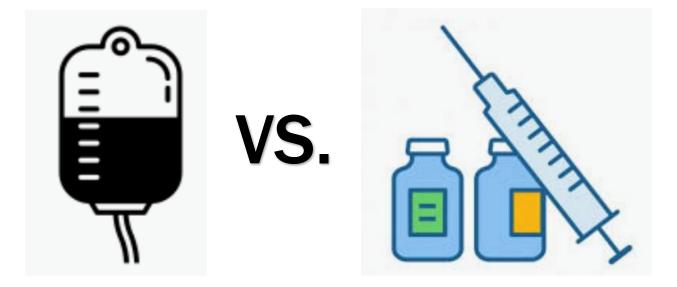
"Fibrinogen" Phase (n=51)

 Rotem guided hemostasis correction using fibrinogen concentrate instead of cryoprecipitate

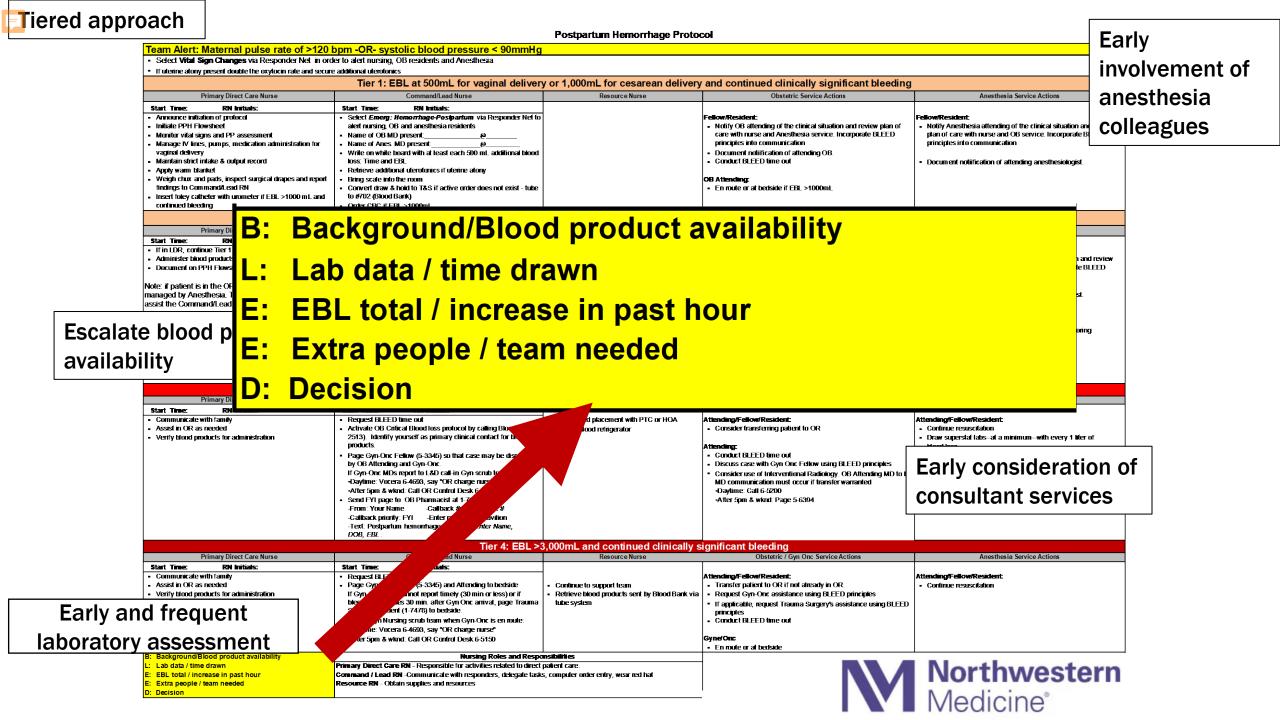
COMPARISON OF TRANSFUSION STRATEGIES

=

COMPLICATIONS OF TRANSFUSION


	Shock Pack (n = 42)	Fibrinogen (n = 51)	p value
ICU admission	4 (9%)	1 (2%)	NS
ΤΑϹΟ	4 (9%)	0	0.0367
TRALI	0	0	NS
Postpartum hysterectomy	6 (14%)	3 (6%)	NS
Death	0	0	NS

RECOMMENDATIONS FOR TREATMENTOF PPH


- Obtain early coagulation studies
- Consider use of point of care coagulation testing
- Early plasma administration is unnecessary
- Fibrinogen of <2g/L is high risk of severe PPH and coagulation product replacement is vital.

QUESTIONS FOR THE FUTURE

What is the best fibrinogen replacement strategy?

What is the ideal resuscitation strategy during PPH?

RACIAL DISPARITIES IN PPH RESPONSE

RESOURCES

ALLIANCE FOR INNOVATION ON MATERNAL HEALTH

CMQCC California Maternal Quality Care Collaborative

HEMORRHAGE

Quick Stats

- Defined as cumulative blood loss of at least 1000mL or blood loss accompanied by signs/symptoms or hypovolemia within 24 h following the birth process
- Mortality is often deemed preventable
- Structured based team response improves outcomes

What Can We Do?

- Design/implement a stage based hemorrhage plan with other disciplines
- Provide early and aggressive management
- Examine effectiveness of laboratory-guided transfusion for improved maternal outcome

WHAT CAN #OBANESTHES DO?

Quick Stats

- Sixth leading cause of maternal mortality Uncontrolled hypertension is the most important risk factor for stroke in patients with preeclampsia
- Hypertensive crisis and failed airways are more common in women with preeclampsia

What Can We Do?

Consider developing a Severe Pre-eclampsia-Eclampsia Box with emergency medications Use neuraxial analgesia when possible Research pathophysiologic mechanisms of disorders and their physiologic effects

VENOUS THROMBOELMBOLISM

Quick Stats

- Cause specific mortality ratio has increased by 50% over the past 20 years
 DVT is 15 times more likely to occur in the
 - postpartum period than in pregnancy Thromboprophylaxis is the most important
 - modifiable strategy to reduce death

- What Can We Do?
- Collaborate with care team to develop strategies for prophylaxis that do not impede the use of neuraxial analgesia/anesthesia Provide invasive monitoring and critical care
- support when needed Investigate the hematologic effects of
- investigate the hematologic effects of anticoagulants in pregnancy and postpartum

ANESTHESIA RELATED

Quick Stats

- Most cases occur in cesarean deliveries Most airway disasters occur in the period
- Most airway disasters occur in the peri-extubation period and in the recovery unit
 - Often deemed preventable: medication error, miscommunication, inadequate supervision, and inadequate monitoring as root causes

What Can We Do?

- Identify latent safety threats; participate in multidisciplinary performance improvements Ensure optimal communication between personnel by using techniques such as check backs and closed loop communication
- Evaluate monitoring strategies and decision tree algorithms for post-partum care

Society for Obstetric Anesthesia and Perinatology.

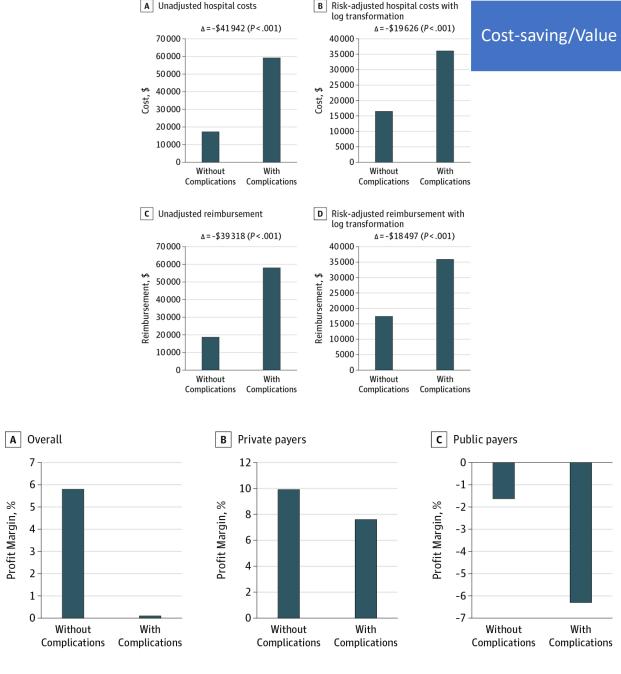
Quality indicators in Anesthesiology and Perioperative Medicine

Akbar Herekar, MD

Medical Director of Quality for Perioperative and Adult Critical Care

Wellstar MCG Health System

- "The secret of quality is love. You have to love your patient, you have to love your profession, you have to love your God."
- Avedis Donabedian, M.D., M.P.H.


Financial aspect

Cost-saving/Value

Reimbursement

Table 3. Changes in Risk-Adjusted Hospital Costs, Profit, and Reimbursement With Complications for Selected Complication Types

	Costs in Descurses	Reimbursement Amount Paid to the Hospital		Llocation Destin
Complication	Costs in Resources Used by the Hospital	\$	%	Hospital Profit Margin, %
Pneumonia				
No complication	18939	19771	NA	6
With complication	49 060	44 899	NA	-8
Increase in reimbursement	NA	25 129	127	NA
UTI				
No complication	19 048	19833		6
With complication	27 166	27 606	NA	3
Increase in reimbursement	NA	7773	39	NA
Superficial incisional SSI				
No complication	18851	19611	NA	5
With complication	28 180	29 236	NA	5
Increase in reimbursement	NA	9625	49	NA
Deep incisional SSI				
No complication	19 178	19954	NA	5
With complication	32 973	33 615	NA	3
Increase in reimbursement	NA	13 661	69	NA
Organ space SSI				
No complication	18 990	19 688	NA	5
With complication	35 477	40 423	NA	13
Increase in reimbursement	NA	20735	105	NA
Sepsis				
No complication	18 499	19 352	NA	6
With complication	45 361	43 518	NA	-3
Increase in reimbursement	NA	24 166	125	NA
Pulmonary embolism				
No complication	19 215	19 998	NA	5
With complication	31 405	30 674	NA	-2
Increase in reimbursement	NA	10 676	53	NA

Abbreviations: NA, not applicable; SSI, surgical site infection; UTI, urinary tract infection.

6

5

4

3

2

1 -0

Profit Margin, %

Potential savings by reducing post operative unplanned intubation by smoking cessation		Cost-saving/Value
Total number of cases		10000
Complication rate		1.85%
Cost of intervention	\$ 60,000.00	
Complication reduction		19%
Risk reduction		0.352%
New complication rate		1.499%
Cost of complication	\$ 46,400.00	
Number of complications		185
Percentage of patients with complications who smoke		41%
Potential number of complications reduced		14.4115
Current cost of complications	\$ 8,584,000.00	
	\$	

A little bit of history

Sustainable growth rate introduced in 1997

 designed to control Medicare spending on physician services by setting annual targets for expenditure growth Medicare Access and CHIP Reauthorization Act (MACRA) signed in to law on April 16, 2015

• The law aimed to repeal the SGR formula and establish a new framework to reward healthcare providers for delivering high-quality care. Quality Payment Program started on January 1, 2017

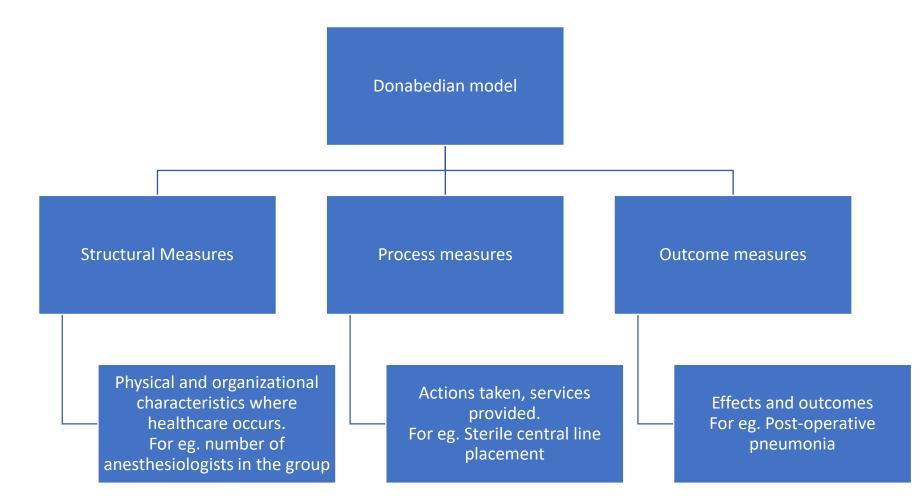
The Quality Payment Program Has 2 Payment Tracks

Current Structure of MIPS

Re-imbursement

MVPs: MIPS Value Pathway

Future State of MIPS


FOUNDATION Promoting Interoperability Population Health Measures


Understanding Quality Metrics

Models of quality of care

Ţ

Models of quality of care

Ţ

AQI - Previous Measures

Measures Removed from 2024 AQI NACOR QCDR Measure Set

Please note the following measures have been removed or retired from the AQI NACOR registry for QCDR reporting.

Measure ID	Measure Title	Reason for Removal
AQI56	Use of Neuraxial Techniques and/or Peripheral Nerve Blocks for Total Knee Arthroplasty (TKA)	CMS rejected this measure due to being considered topped-out.
AQI68	Obstructive Sleep Apnea: Mitigation Strategies	CMS rejected this measure due to being considered topped-out.
AQ169	Intraoperative Antibiotic Redosing	CMS rejected this measure due to being a process-based measure and doesn't focus on a quality action or outcome.
AQI73	Prevention of Arterial Line-Related Bloodstream Infections	CMS rejected this measure due to being considered topped-out.
ABG41	Upper Extremity Nerve Blockade in Shoulder Surgery	CMS rejected this measure due to being considered topped-out.
ABG43	Use of Capnography for Non-Operating Room Anesthesia Measure	CMS rejected this measure due to being considered topped-out.

Current state

2024 QCDR Measures Available for Reporting through AQI NACOR

Clinicians and groups reporting via Qualified Clinical Data Registry (QCDR) measures to fulfill requirements for the MIPS Quality component.

Measure ID	Measure Title	Measure Type
AQI18	Coronary Artery Bypass Graft (CABG): Prolonged Intubation	Inverse Measure – High Priority
AQI48	Patient-Reported Experience with Anesthesia	Process – High Priority
AQI49	Adherence to Blood Conservation Guidelines for Cardiac Operations using Cardiopulmonary Bypass (CPB)	Composite
AQI65	Avoidance of Cerebral Hyperthermia for Procedures Involving Cardiopulmonary Bypass	Outcome – High Priority
AQI67	Consultation for Frail Patients	Process – High Priority
AQI71	Ambulatory Glucose Management	Process
AQI72	Perioperative Anemia Management	Process – High Priority
ABG44*	Low Flow Inhalational General Anesthesia	Process – High Priority
ePreop31**	Intraoperative Hypotension among Non-Emergent Noncardiac Surgical Cases	Intermediate Outcome – High Priority

*ASA LICENSED THIS MEASURE FROM ABG **ASA LICENSED THIS MEASURE FROM Provation

2024 MIPS Measures Available for Reporting through AQI NACOR

Clinicians and groups reporting via Qualified Registry or Qualified Clinical Data Registry (QCDR) can report Merit-based Incentive Payment System (MIPS) measures to fulfill requirements for the MIPS Quality component. <u>Download full MIPS measure specifications from CMS</u>. The naming convention for MIPS measures is "Quality ID XXX" or "QID XXX".

Measure ID	Measure Title	Measure Type
QID 047	Advance Care Plan	Process – High Priority
QID 130	Documentation of Current Medications in the Medical Record	Process – High Priority
QID 155	Falls: Plan of Care	Process – High Priority
QID 182	Functional Outcome Assessment	Process – High Priority
QID 226	Preventive Care and Screening: Tobacco Use: Screening and Cessation Intervention	Process
QID 317	Preventive Care and Screening: Screening for High Blood Pressure and Follow-Up Documented	Process
QID 404*	Anesthesiology Smoking Abstinence	Intermediate Outcome – High Priority
QID 424*	Perioperative Temperature Management	Outcome – High Priority
QID 430*	Prevention of Post-Operative Nausea and Vomiting (PONV) – Combination Therapy	Process – High Priority
QID 463*	Prevention of Post-Operative Vomiting (POV) – Combination Therapy (Pediatrics)	Process – High Priority
QID 468	Continuity of Pharmacotherapy for Opioid Use Disorder (OUD)	Process – High Priority
QID 477*	Multimodal Pain Management	Outcome – High Priority
QID 487	Screening for Social Drivers of Health	Process – High Priority

Measures with an asterisk () are included in the CMS-recommended Anesthesiology Measure Set. Eligible clinicians and groups are not required to report these measures towards the six measures required for the MIPS Quality Component but may find them applicable to their practice.

Patient Safety and Support of Positive Experiences with Anesthesia

MVP ID: G0059

Ţ

Most applicable medical specialty(s): Anesthesiology

The Patient Safety and Support of Positive Experiences with Anesthesia MVP focuses on increasing quality of anesthesia care, improving postoperative outcomes, promoting patient safety, and enhancing satisfaction for patients receiving anesthesia. The measures are used for a variety of surgical procedures that anesthesiologists deliver care for, and are broadly applicable to anesthesiologists practicing within ambulatory, outpatient, and inpatient hospital settings.

Current state

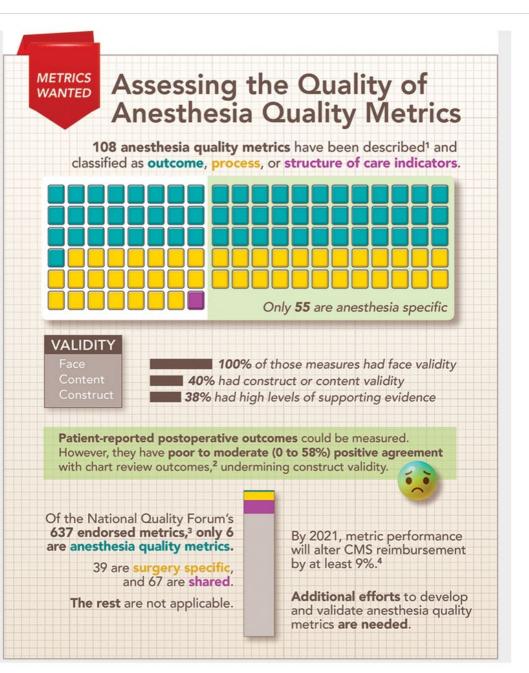
2024 QCDR Measures Available for Reporting through AQI NACOR

Clinicians and groups reporting via Qualified Clinical Data Registry (QCDR) measures to fulfill requirements for the MIPS Quality component.

Measure ID	Measure Title	Measure Type
AQI18	Coronary Artery Bypass Graft (CABG): Prolonged Intubation	Inverse Measure – High Priority
AQI48	Patient-Reported Experience with Anesthesia	Process – High Priority
AQI49	Adherence to Blood Conservation Guidelines for Cardiac Operations using Cardiopulmonary Bypass (CPB)	Composite
AQI65	Avoidance of Cerebral Hyperthermia for Procedures Involving Cardiopulmonary Bypass	Outcome – High Priority
AQI67	Consultation for Frail Patients	Process – High Priority
AQI71	Ambulatory Glucose Management	Process
AQI72	Perioperative Anemia Management	Process – High Priority
ABG44*	Low Flow Inhalational General Anesthesia	Process – High Priority
ePreop31**	Intraoperative Hypotension among Non-Emergent Noncardiac Surgical Cases	Intermediate Outcome – High Priority

*ASA LICENSED THIS MEASURE FROM ABG **ASA LICENSED THIS MEASURE FROM Provation

2024 MIPS Measures Available for Reporting through AQI NACOR


Clinicians and groups reporting via Qualified Registry or Qualified Clinical Data Registry (QCDR) can report Merit-based Incentive Payment System (MIPS) measures to fulfill requirements for the MIPS Quality component. <u>Download full MIPS measure specifications from</u> <u>CMS</u>. The naming convention for MIPS measures is "Quality ID XXX" or "QID XXX".

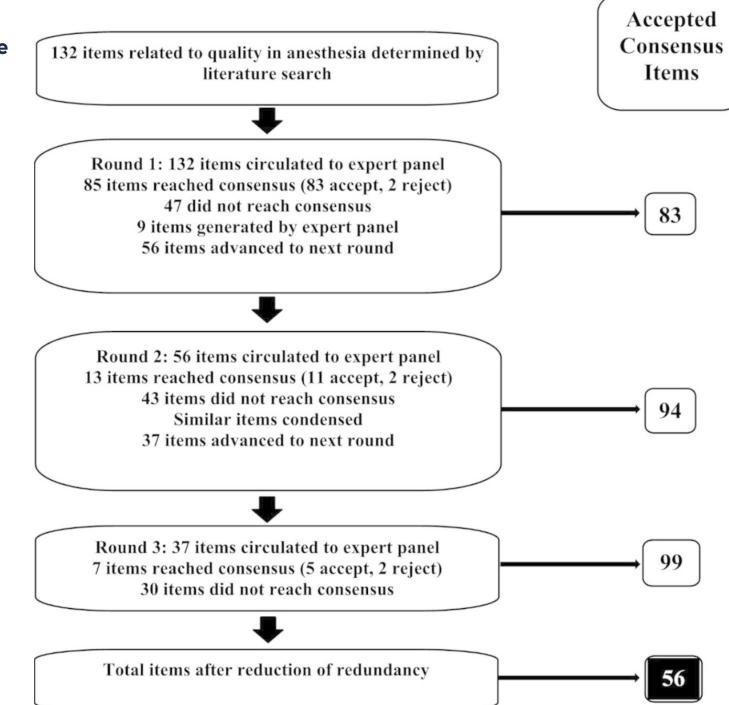
Measure ID	Measure Title	Measure Type
QID 047	Advance Care Plan	Process – High Priority
QID 130	Documentation of Current Medications in the Medical Record	Process – High Priority
QID 155	Falls: Plan of Care	Process – High Priority
QID 182	Functional Outcome Assessment	Process – High Priority
QID 226	Preventive Care and Screening: Tobacco Use: Screening and Cessation Intervention	Process
QID 317	Preventive Care and Screening: Screening for High Blood Pressure and Follow-Up Documented	Process
QID 404*	Anesthesiology Smoking Abstinence	Intermediate Outcome – High Priority
QID 424*	Perioperative Temperature Management	Outcome – High Priority
QID 430*	Prevention of Post-Operative Nausea and Vomiting (PONV) – Combination Therapy	Process – High Priority
QID 463*	Prevention of Post-Operative Vomiting (POV) – Combination Therapy (Pediatrics)	Process – High Priority
QID 468	Continuity of Pharmacotherapy for Opioid Use Disorder (OUD)	Process – High Priority
QID 477*	Multimodal Pain Management	Outcome – High Priority
QID 487	Screening for Social Drivers of Health	Process – High Priority

Measures with an asterisk () are included in the CMS-recommended Anesthesiology Measure Set. Eligible clinicians and groups are not required to report these measures towards the six measures required for the MIPS Quality Component but may find them applicable to their practice. Hospital-Wide, 30-Day, **All-Cause Unplanned** Readmission (HWR) Rate for the Merit-**Based Incentive** Payment System (MIPS) Groups

The outcome for this measure is any unplanned readmission to a non-federal, short-stay, acutecare or critical access hospital within 30 days of discharge from an index admission. Clinician and Clinician Group Risk-standardized Hospital Admission Rates for Patients with Multiple Chronic Conditions

The outcome for this measure is the number of acute unplanned admissions per 100 personyears at risk for admission during the measurement period.

Are process measures enough?


Can we do better?

Anesthesia quality indicators to measure and improve your practice: a modified delphi study

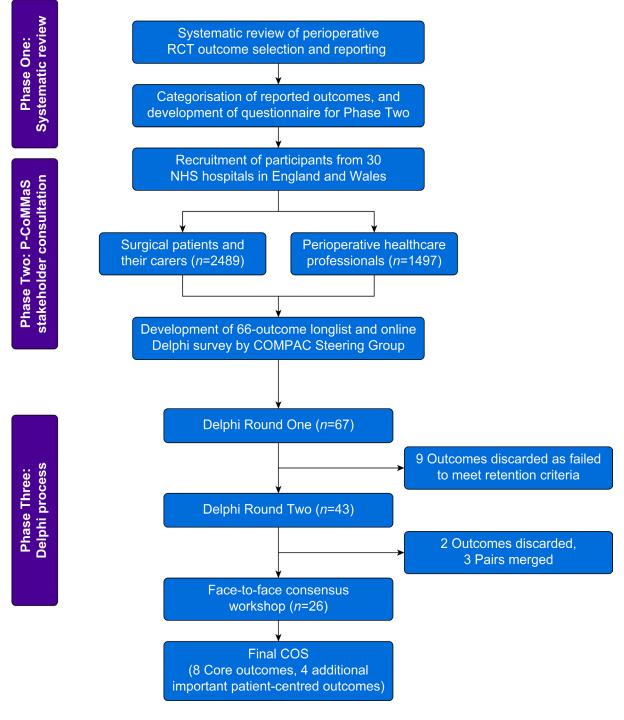
May-Sann Yee [™] & Jordan Tarshis

BMC Anesthesiology 23, Article number: 256 (2023) Cite this article

2373 Accesses Metrics

Jundicators	Туре	% agree ment
Airway complications (greater than 3 attempts at intubation, cannot intubate/cannot ventilate, laryngospasm, hypoxia, dental/soft tissue injury)*	Process and outcome	93
Incidence & duration of perioperative adverse events including hypoxia, hyper/hypocarbia, hyper/hypothermia, hyper/hypoglycemia, anesthetic, overdose	Outcome	86
Number of medical errors (patient receiving wrong drug, drug dose, wrong surgical site, wrong blood product etc)	Process	79
Degree & duration of hypotension on induction (SBP < 80) *	Outcome	71
Patient satisfaction (composite patient experience)	Outcome	79
Medication error with wrong medication or wrong dose given	Process	71
Postoperative residual neuromuscular blockade (ToF < 0.9 measured 15 min after arrival to PACU, clinical residual weakness) requiring intervention by an anesthesiologist to treat inadequate reversal of neuromuscular blockade*	Outcome	71
Temperature less than 35.5 Celsius on arrival to PACU*	Outcome	71
Complications of neuraxial block (failed block, inadvertent dural puncture, high block, infection, neurologic	Outcome	64
Incidence of severe PONV (2 or more episodes of severe nausea/vomiting over 6 hours apart OR requiring more than 2	Outcome	64

British Journal of Anaesthesia, 128 (1): 174–185 (2022)


doi: 10.1016/j.bja.2021.09.027 Advance Access Publication Date: 2 November 2021 Quality and Patient Safety

QUALITY AND PATIENT SAFETY

Core Outcome Measures for Perioperative and Anaesthetic Care (COMPAC): a modified Delphi process to develop a core outcome set for trials in perioperative care and anaesthesia

Oliver Boney^{1,2,*}, S. Ramani Moonesinghe^{1,2}, Paul S. Myles³, Michael P. W. Grocott^{4,5}, and the StEP-COMPAC group

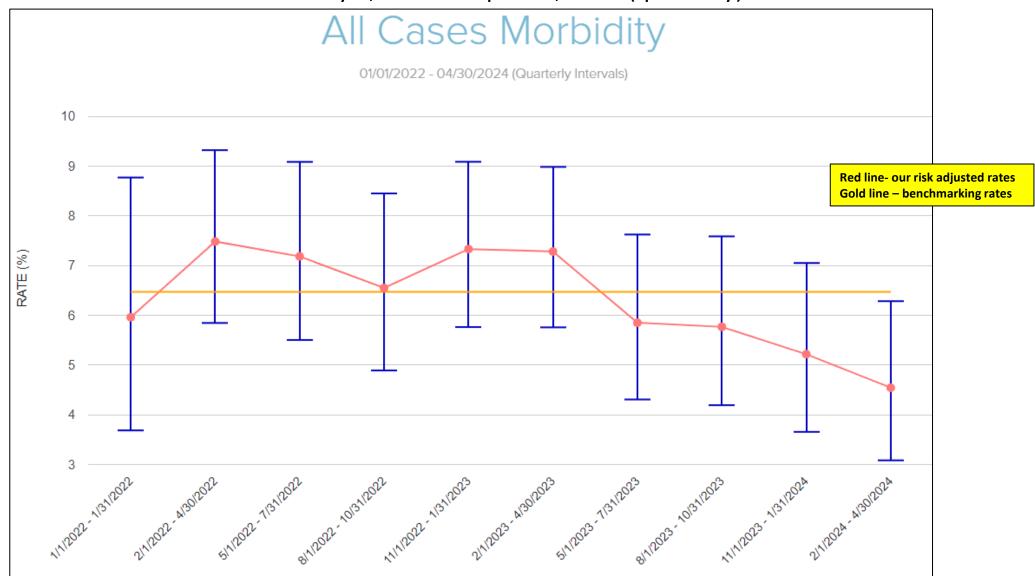
- Mixed methods study
- Qualitative then quantitative modified Delphi Process
- Round 1 & 2
 - ≥65% of respondents from either stakeholder group scored the outcome ≥4 (i.e. 'important' or 'very important'), AND
 - <20% of respondents from that stakeholder group scored the outcome ≤2 (i.e. 'not very important' or 'not at all important').
- Round 3
 - Face-to-face consensus workshop
 - Small group discussions + plenary discussion
 - Outcomes scored as 2 core
 - Outcomes scored as 1 desirable
 - Outcomes scored as 0 excluded

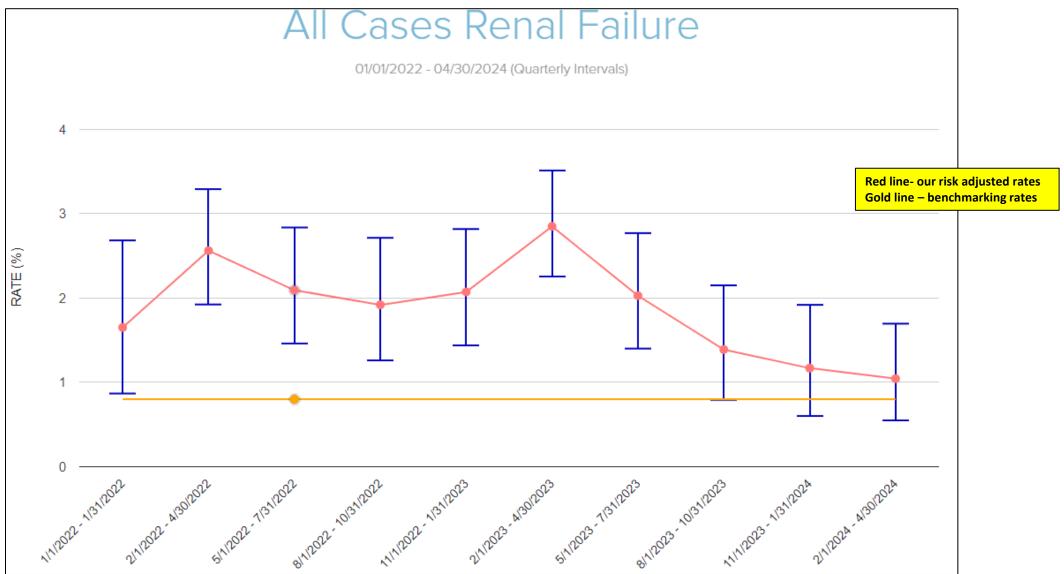


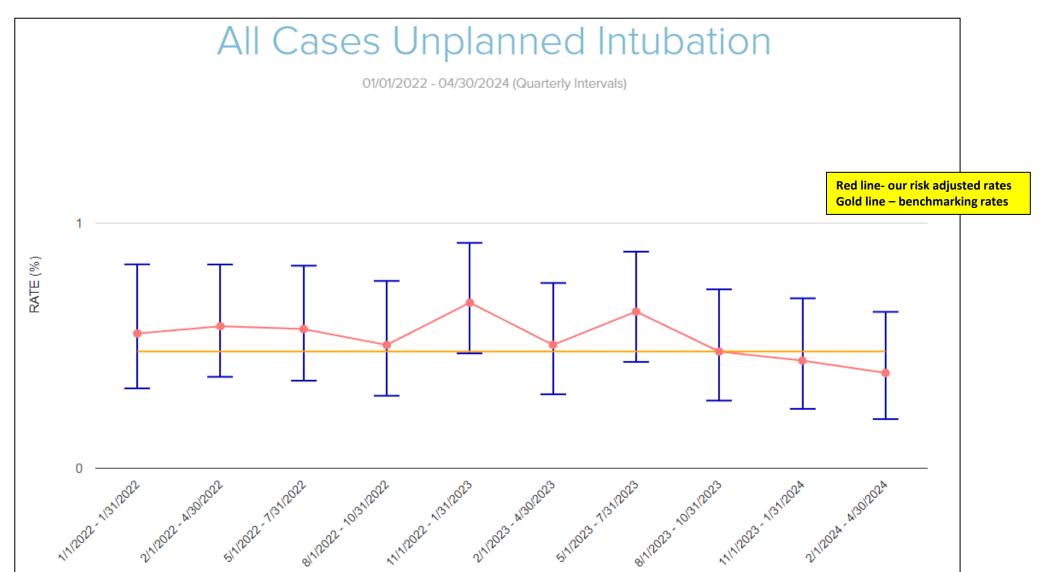
Outcome domain	Core outcome(s)	Corresponding StEP endpoints	
	Overall mortality (death rate) after an operation	Organ failure and survival	
Mortality/survival	Overall long-term survival (e.g. after a cancer operation)	Cancer and long-term survival ²⁹	
Parianarativo complicationo	Major (serious) postoperative complications and adverse events (using accepted, validated definitions of major and minor complications)	Various ^{26–28,30,31}	
Perioperative complications	Complications and adverse events causing permanent disability or harm	vanous	
Resource use	Total number of days spent in hospital for the operation	Health resource use	
Resource use	Unplanned hospital readmission within 30 days of operation		
Short-term recovery after surgery	Discharge destination from hospital (e.g. own home/rehab facility/care home), level of dependence (need for carers), or both	Patient comfort ³²	
Longer-term recovery after surgery	Overall health-related quality of life (using a validated scoring tool)	Patient-centred outcomes ²⁵	
Additional important patient-centred out	comes to be considered for inclusion		
	Pain (incidence/severity/duration)		
Short-term recovery after surgery	Nausea with or without vomiting (incidence/severity/duration)	Patient comfort ³²	
	Mental, emotional, and psychological wellbeing		
Overall success/failure of surgery	Patient satisfaction with their operation, willingness (with hindsight) to choose the same again, or both	Patient-centred outcomes ²⁵	

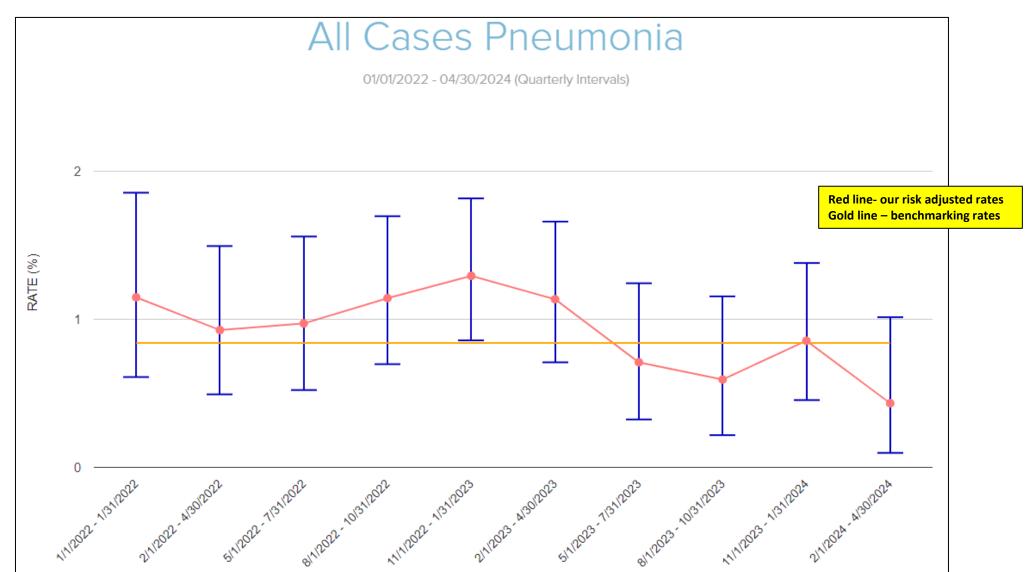
Indicators	Evidence Score for Prescriptive Measures (Oxford Center for Evidence Scale)
Documented preanesthetic patient consultation (nine indicators)	5
Electrocardiographic tracing according to departmental or other established protocols	5
Procedure with an anesthesiologist in attendance where the anesthesia record substantially comply with Australian and New Zealand College of Anaesthetists requirements	5
Patients who have received a preanesthesia assessment before the day of surgery	5
Patients receiving a blood transfusion in accordance with National Health and Medical Research Council guidelines during the procedure with an anesthesiologist	5
Patients who undergo a procedure with an anesthesiologist in attendance where there is an assistant to the anesthesiologist	5
Adequate perioperative management of patients' current medications	1b-5
Patients undergoing a procedure with an anesthesiologist who have documented evidence of a postanesthesia review/other process	5
Patients with a history of postoperative nausea and vomiting to whom a prophylactic antiemetic has been administered	1b-4
Patients with analgesia adequate enough to allow acute rehabilitation	5
Patients with pain intensity scores regularly recorded by nursing staff	5
Patients receiving prescribed antiemetic treatment when nausea and vomiting are present during acute pain management	4
Nurse reading acute pain protocols	5
Comprehensive planning for pain management	5
Surgical patients having an order for an antibiotic to be given within 1 h (2 h if fluoroquinolone or vancomycin) before the surgical incision	1a-2b
Surgical patients with administration of a prophylactic antibiotic within 1 h (2 h if fluoroquinolone or vancomycin) before the surgical incision (two indicators)	1a-2b
Surgical patients for whom first- or second-generation cephalosporin prophylaxis is indicated and who had an order for cefazolin cefuroxime	1a-2b
Noncardiac surgical patients who received prophylactic antibiotics and have an order for discontinuation within 24 h of surgical end time (two indicators)	1a-2b
Cardiac surgical patients who received prophylactic antibiotics and who have an order for discontinuation within 48 h of surgical end time	5
Surgical patients who had an order for venous thromboembolism prophylaxis to be given within 24 h before incision/after surgery end (two indicators)	1a-2b
Patients for whom central venous catheter was inserted with all elements of sterile barrier technique followed	1a
Patients for whom active warming was used intraoperatively or one body temperature ≥ 36°C recorded within 30 min before or after anesthesia end	1b-3b
Prophylactic antibiotic selection for surgical patients according to current recommendations	1a-2b
Cardiac surgery patients with controlled 6 AM postoperative serum glucose	1b
Colorectal surgery patients with immediate postoperative normothermia	1b
Surgery patients on a β blocker before arrival who received a β blocker during the perioperative period	1a-1b
Patients with isolated coronary artery bypass graft documented to have received preoperative β blockade	1a-1b
Surgery patients who received appropriate venous thromboembolism prophylaxis within 24 h before surgery to 24 h after surgery	1a-2b

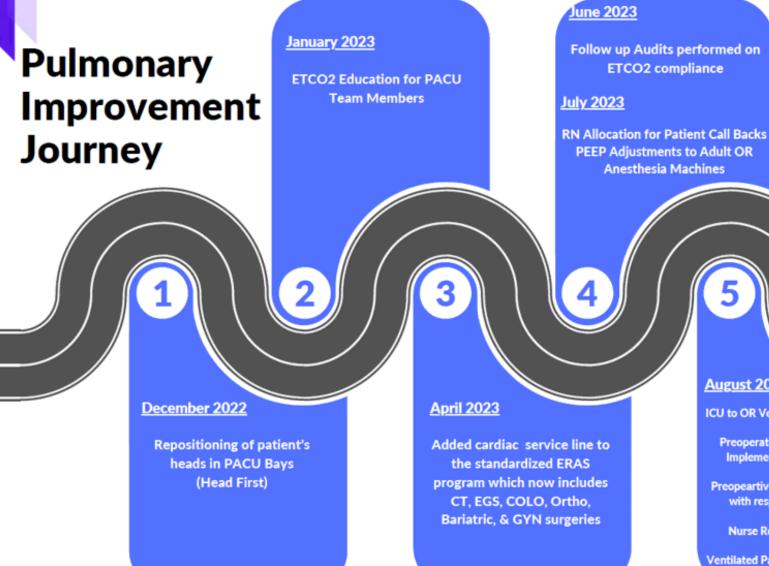
- Process indicators offer great promise as quality improvement tools as they often define targets that have to be reached. They reflect the care that clinicians are delivering day to day and can be incorporated into routine data collection. Clinicians feel accountable for them, rather than for outcome measures that may be affected by other variables.³⁹
- However, they have to be used cautiously, even if links to causal outcomes have been demonstrated. A clinician may perform well in one process but not in another. If the indicators do not cover all the processes that can affect outcomes, they may be misleading.³⁹


Can anesthesiologists affect outcomes?


Can anesthesiologists affect outcomes?


Postop Morbidity Occurrences


Postop Renal Failure Occurrences



Postop Unplanned Intubation Occurrences

Postop Pneumonia Occurrences

September 2023

Perioperative Website for Patient Instructions Developed

November 2023

Implemented Intrapercussive Ventilation (IPV) Equipment with education and SOP

August 2023

ICU to OR Vent Transport Education

Preoperative CHG Mouthwash Implemented for all patients

Preopeartive Jet Nebs for patients with respiratory conditions

Nurse Residency Education

Ventilated Patient Mobility Initiated

In Progress

SAT/SBT Order Sets Inpatient Unit White Board Refresh **ICough Measures for inpatient** units with focus on oral care and mobility **Population Health Partnership for** high risk patients Nurse driven pulmonary orderset,

Moving forward

Modified Delphi Study for U.S. based metrics focused on outcomes Focus on extractability rather than self-reporting

Consider establishment of a Georgia collaborative for anesthesia and perioperative medicine quality metrics and outcomes

Bibliography

- Healy MA, Mullard AJ, Campbell DA, Dimick JB. Hospital and Payer Costs Associated With Surgical Complications. *JAMA Surg.* 2016;151(9):823–830. doi:10.1001/jamasurg.2016.0773
- <u>CMS Quality Payment Program https://qpp.cms.gov/</u>
- Donabedian, A (2005) Evaluating the Quality of Medical Care, The Milbank Quarterly, 83(4):691-729
- <u>https://www.qualityforum.org/Measuring_Performance/Submitting_Standards/Measure_Evaluation_Criteria.aspx</u>
- Anesthesia Quality Institute: https://www.aqihq.org/
- <u>https://qpp.cms.gov/mips/explore-mips-value-pathways/2024/G0059</u>
- Jonathan P. Wanderer, James P. Rathmell; Assessing the Quality of Anesthesia Quality Metrics. Anesthesiology 2016; 124:A21 doi: <u>https://doi.org/10.1097/01.anes.0000482715.81732.22</u>
- Images using DALLE-2, Open-ai
- Yee, MS., Tarshis, J. Anesthesia quality indicators to measure and improve your practice: a modified delphi study. BMC Anesthesiol 23, 256 (2023). <u>https://doi.org/10.1186/s12871-023-02195-w</u>
- Boney O, Moonesinghe SR, Myles PS, Grocott MPW; StEP-COMPAC group. Core Outcome Measures for Perioperative and Anaesthetic Care (COMPAC): a modified Delphi process to develop a core outcome set for trials in perioperative care and anaesthesia. Br J Anaesth. 2022 Jan;128(1):174-185. doi: 10.1016/j.bja.2021.09.027. Epub 2021 Nov 2. PMID: 34740438.

Thank you!

MEDICAL MALPRACTICE

How to stay out of the Courtroom.

Joscelyn Hughes Bendin Sumrall & Ladner, LLC July 14, 2024

What is Medical Malpractice?

Medical malpractice is when a doctor or other health care provider treats a patient in a manner that deviates from the medical standard or care, and the patient suffers harm as a result.

What is the standard of care in Georgia?

• The degree of care and skill ordinarily employed by the profession generally under similar conditions and like surrounding circumstances. O.C.G.A. § 51-1-27.

• This is a NATIONAL standard

O.C.G.A. § 9-11-9.1 – Expert Affidavit

 In any action for damages alleging professional malpractice the plaintiff shall be required to file with the complaint an affidavit of an expert competent to testify, which affidavit shall set forth specifically at least one negligent act or omission claimed to exist and the factual basis for each such claim.

How do you explain reasonableness to a jury?

- The Medicine
- Medical Record Documentation
- Expert Reviews
- You. Your presentation.

Common Reasons Anesthesiologists end up in the Courtroom.

- Poor pre-operative evaluation.
- Errors in the operating room.
- Code Response.
- Rare outcomes that are catastrophic.
- Same-day surgery.

Pre-Op Evaluation

Medical as of 6/22/2018

Medical last reviewed by	D	n 6/22/2018
Past Medical History		
Diagnosis	Date	Comments
Anesthesia complication		resp distress after extubation
Asthma	<u> </u>	mother states not asthma "asthmaic symptoms only", mother states it is controlled now, no issues for 2 months

Relevant Problems No relevant active problems

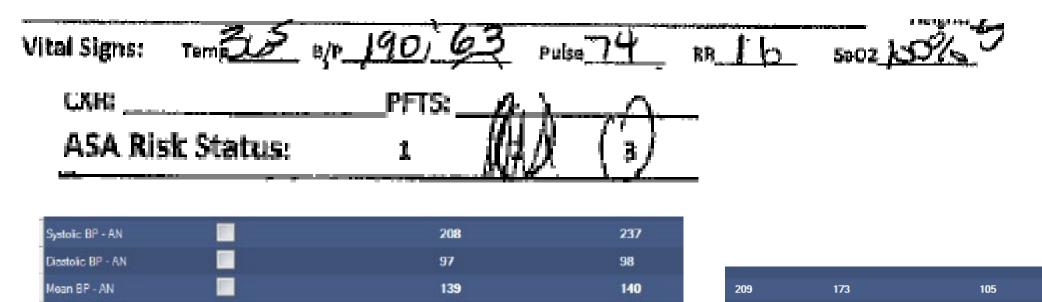
Anesthesia Plan

ASA 2

Anesthesia Plan: **General** (Former premi 24 weeks on vent for a while Now with some reactive airway hx clear today)

It is a departure from the standard of care for physicians caring for

pediatric patients presenting for an elective surgical procedure requiring general anesthesia who


have a medical history of reactive airway disease, post extubation respiratory distress, asthma,

prolonged ventilator dependence at birth, sleep apnea and a recent diagnosis of upper respiratory

infection, to allow such patients to undergo general anesthesia.

Row Name	0350
Quick Updates	
Quick Updates - Free Text	Pt presents to the ER with mother with c/o fever with associated n/v since earlier today. Pt also with nasal congestion, but mother states pt is always congested which is associated with him being premature at birth. Mother states pt's fever was 103F at home, but she gave him Motrin prior to arrival to ER. No active n/v noted at this time. Flu swab sent. Will continue to monitorJB

Pre-Op Evaluation

2 Q. Do you remember if the anesthesiologist came by

3 after your mom had received the three medications or

4 before, do you recall?

5 A. I believe it was after.

6 Q. And do you believe you told the

7 anesthesiologist that your mom was having complaints of

8 right visual changes, blurriness, unable to see?

9 A. No. I told the nurses.

10 Q. So you do not believe that you told the

11 anesthesiologist about your mom having visual

12 disturbances before the procedure on February 2nd --

13 A. No.

14 Q. -- is that correct?

15 A. That's correct.

a) Failing to postpone the 2/2/18 elective surgery due to the patient's elevated

79

114

88

127

blood pressure and symptoms of neurological change;

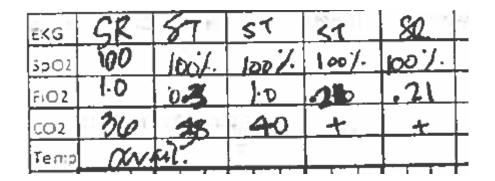
b) Failing to appropriately manage the patient's blood pressure intraoperatively to

prevent severe hypotension.

91

55

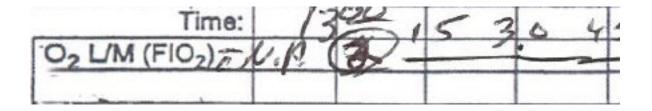
70


96

53

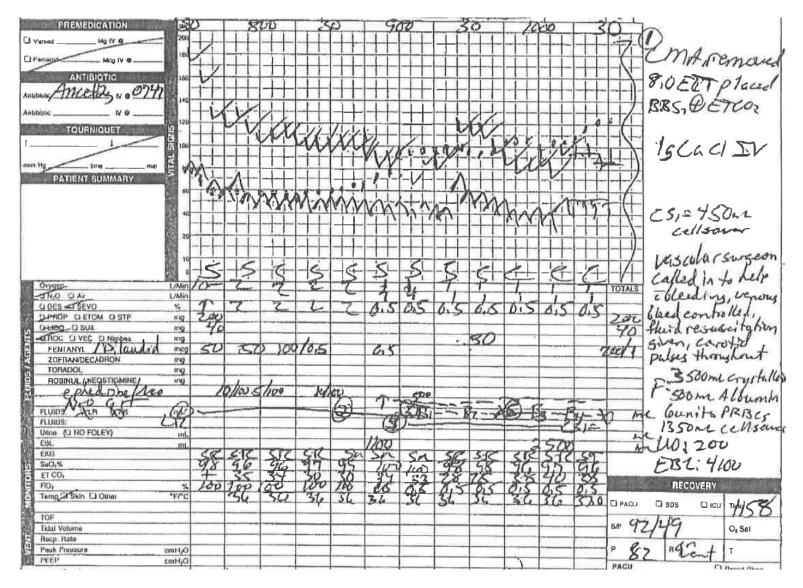
72

55


77

Violations: Wield likely violated the standard of care by failing to lower the FiO2 level from 100% to 30% or less prior to the activation of the Bovie. As overwritten, the anesthesia record shows that wield dropped the FiO2 level from 1.0 (100%) to .03 (30%) at around the time of the fire. But the 0.3 figure has been written over the original entry, so that the original number is unreadable. That change, moreover, has been made without initials or other annotation to call out and verify the change—conduct that itself violates the standard of care. Based on these facts, will likely failed to drop the FiO2 level from 100% to 30% in the first place, in violation of the standard of care.

Even assuming that lower the FiO2 level to 30%, she violated the standard of care by failing to preclude the use of the Bovie for least 3-5 minutes, to allow the oxygen-rich air to dissipate.


The requirements in violated applied with particular force here, because for the self controlled and had introduced the oxygen-rich air, and because she knew or should have known that the Bovie could be used.

(a) The Plaintiff did not need supplemental oxygen, and the Defendants should not have administered it.

(b) If the Plaintiff had needed supplemental oxygen for some reason not documented in the medical records, the Defendants should not have placed the Plaintiff on supplemental oxygen in a high fire risk procedure without using a closed oxygen delivery system.

(c) The Defendant physicians failed to communicate during the procedure to ensure that no oxygen was flowing when electric cauterization devices were used and that any accumulated oxygen be allowed to dissipate prior to the use of any electric cauterization equipment.

(1) <u>failed to take adequate measures to resuscitate</u> her during her total hip replacement surgery after she experienced blood loss following the injury to her superficial femoral vein.

(2) failed to take earlier and more frequent arterial blood gases and complete blood counts du1ing the total hip replacement surgery.

(3) <u>failed to use additional peripheral intravenous lines</u> to resuscitate her during her total hip replacement surgery.
(4) <u>failed to stop the surgery</u> until the patient had been satisfactorily resuscitated and her metabolic status returned to approaching normal values.

Code Response

History of events prior to const: .								1			11 04	hind	11
Time	UR.	63	160	1617	1619	1620	Mar R	1002	1627	(ap	الكل	1637	1633
CER AIT program The IT	1	1	4	4	\mathcal{V}	- 7	\mathcal{L}	ž	~~~		162	國際影響	S. 47 M
Spontaneous puise prevent	0	_0	0_	\mathcal{Q}	Q	10	\mathcal{O}	Q	Q	\mathcal{Q}	0	$\mathbf{\nabla}$	~
Cardiac Rhythm	PEA	PEA	PEA	₩£A	PEA.	PEA	RA	AD	95	b S	PS	AS_	SR
Heart Rate/min	170	170	120	40	30	30	50	0	Q,	0	<u>_Q</u>	-O	80
Mode of Respiration parameters	BV	BV	13V	BV	5V	8V	BV	BV	BV	BV	BV	BA	8V
6P	-												96/62
ETCO2												ļ	
AED Shock (in joules)										[
Dello in joules:								1		<u> </u>			
Transcutaneous pacing						1			<u>[</u>				
Arritoclorone 300 mg (V push				L				<u> </u>			L		
Amiodorone 160 mig IV push				1		<u> </u>		L		1			
A fropine 1 mg iV No to realize of 3 mg													
Atropine 0.5 mg IV Up to molinam of 5 mg													
CoCI 10% 1Gm IV		1		11	1	1						-	
Epinephrine 1 mg IV	1 mm			V			ſ	1	ļ	ļ	ļ		
Udocaine # of mg IV Up to makes with of Impilip					/								
NaHCO3 # of amps (50 mEq/50 mH IV				\bigvee	1								
HEROBIN									<u> </u>	1			
30,000 (m)	Ś		1					[L			
Procedures/Lobs/ABGs IV fluids/Comments	V										A CA	Por Chu	*
	\						\				18	1 the)
	,	,	,	,	'	,				iarle Oli	ion	V C	Y
10693						Ye	- WOW - 5	peciali	y Direct			8	ι

History of evenis prior to crrest:											<u>.</u>	1		;
Time	1642	1647	1650	1855	1700	1702	1205	1710	1712	1714	100000 AU	NFL CASE PLACE		
CPP-Villi prociest 2	S & 4	1. 10 1		(1, 2)	2.5		0.1	达 70000	14.19.19	202	8.4 3	MS ROLLER	建建着	l de la construcción de la constru
Sponianeous puise present	*	4	+	+	+	+	+	+	8	-6.				
Cardiac Rhythm	Se	SR	SR	SR	58	S &	SR	SR	58			<u> </u>		
HeartRate/min	30	80_	80	69	55	30	84_	79	34		 	<u> </u>	<u> </u>	
Mode of Respiration and two wet	1 2 2	34	BUL	<u>8</u> v	BV.	R√	BV	8V			ļ			·
BP	100/42	nich	133/55	117/69	51/5	148/44	129/72	38/60	4	ļ. —				
ETCO2			L	ļ				<u> </u>		<u> </u>	+			
AED Shock (in joules)				ļ	Į	ļ					+			
Delib in joules	[ļ		<u></u>		<u> </u>	 		<u> </u>		 	
Transculaneous pacing	L		L	ļ	ļ					<u> </u>		<u> </u>		
Amiodorone 308 mg iV push	<u> </u>		ļ	<u> </u>		1	L		<u> </u>			<u> </u>	ļ	
Arriodorone 150 mg IV push		L		E	Backin	ig up	from	the	time	he w	as pro	onour	nced	dead, this means CPR started at no later than
Atropine 1 mg IV Up to mathem of 3 mg				1									-	g my review, CPR was not indicated at this time,
Alropine 0.5 mg IV Up to accidum of 3 mg				5						•		<u> </u>		e likelihood of injury to the SVC. Instead, the sicians provide escalating interventions until he
CaCl 10% 16m M	1							•						de interventions potentially including positional
Epinephrine 1 mg IV		1						•						ECMO. Based on the information currently
Udocaine # of mg IV Op to mailman of Imp By										_				was a breach of the standard of care by Dr.
NaHCO3 # of amps (50 mEq/50 ml) IV	-				1	and	any o	other	physi	cians	or nu	rses v	vho r	esponded and constitutes negligence.
-			1											-
Pre-cedures/Labs/A8Gs JV Buids/Comments	1.1	for Eculo	and the feat	14 T	Ki Can	the SC .	Service and	VA GE FU	40 ECH 40 Ft	to Ca	e llej			

Code Response

Asses	SECH	em É:	:					Int	erv	entions	K.			5					,						Evaluation:
Ткие		Spant. Resp. Rate	æ	Cardine ithythm (post stripy on lack)	HP.	8aO2	Pulae Pady Y //	Cardike Commercians	BVW n/ 198% (32	Defibritate/ Cardiovert (foulds)	Pacing /TCP Rate / mA (invExt)	Preg: Attopics (Dece' Route)	Brug: Episepische (Dose/Route)	Druge (Calchum Chlorida 202 mg 14 (Deev Ruste)	Drugo	(Dese' Route)	Drug:	(Dutter Route)	Drug	(Bose/Roate)	Brug ND 41240	Floid	Rate / Dose)	Orug (Rate / Dose)	Comments: Response to interventions, Procedures, Labs, ABGe, other somments.
1209	h	1.6	5 3		\$	14%	Ν	1	V									1							
1310	2		50		×	DATE	N	V	J						[-	98.8 9889 ⁴ 389, 879		*******	T	T	Į	T		gavers 20 acreg
1314					17		N	\checkmark	1				0.14014 1V								7				N 01-030 1 (201
1315	, –				ľ7		N	1	~	<u> </u>			<u> </u>		1					T	1	1			xi Fluid bolles fulse v sparts x2 bolus given Brochial pulse found
1317					17	1	Y		∇						L	1				T				~~~~~	Brachial pulse frund
1310		0	nφ		8%	Q2	Ι Ý		∇	***********					[1	√	1	1		FILLIG-DONLY X3
1321		40	ηPi		17	(a')	i.		Ī			h,		*****	†		مىرىم يەرىپ		•••••	1	~	<u>†</u>	1		Finid bours XA
1323	~~~~		72		10th		1		1				h	~~~~						1					
1336					3	1 st	Ņ	$\overline{\checkmark}$	17			h	ON-HAT	3		†		-		-†		-			\$ pulse compressions Started
1339	~~~	,			×.	†		Ċ	*****			<u> </u>	0.14GT		 			+		-1		1	1		
1342						1	N		17		<u> </u>		Q SUGA TO							-		1	-		****
1343	-				67		<u> </u>	ý.	$\overline{\nabla}$				×	İ	t				*****	-		İ			all meds 19++5 turned off - CPR
134					17		N	\checkmark	12	 			1	2012 M	t					-†		†	-		
134					17	<u> </u>	N	$\overline{\checkmark}$	t				D-relan		†				*****			1	1		
134					ť7	<u>†</u>	N	5	Ť						†					+		 	-		puise V & puise

and

Assessu	ient						Int	CT V	entions	:				*									_	Evaluation:
ગયત	Spock Resp. Role	HK	Carddae Uthyllun (pest sirihi on hack)	Dr	X)eX	Pulse Pady Y A	Cardine Compressions	BVM w/ 100% O2	BcRbrflats/ Curtievert (Joules)	Pacing (FCP Rule / n.v. (Inv'Ext)		Bray: Zohieplerisc (Tosa/Roule)	Brugs (Alciuty) Afa. met Dour Route)	Bregt Dod IUM. Dicarb 14440 (Dose Steaue)	Drugs	(Dueso' Recise)	Druge	(Dato Route)	Drug Drug	Field	Drag (Raie / Dono)	Filight		Cennneuts: Response to interventions, Procedures, Labs, ABCs, other commente.
750						Ņ	7	\sim				6-1444¥ 3√			L							ļ		
1353				12/14		N	\checkmark	\checkmark				0/111/1	} •							╞				
1396				12/10		N	1	1	[D-MUR	5		L						****	Ļ		AND C V - CONTROL
1357					1	N	\checkmark	\checkmark							L			ļ						puise V - opuls?
1359						N	\checkmark	\bigvee				0.1%	3	ļ	L							<u> </u>		
1401		87		\square		4		1				L		<u> </u>				Į				ļ		epi drig stalled et olimaika apuise ". CPA Stalled
1400		.vvv		X	T	N	J	1												1		Į		Starte
1410	<u> </u>			$\overline{\mathbf{\nabla}}$	[N		V																* pulse, CPR stopp
1411	1		-	\square	1	4		1			[14, (onty 12	-					1_		<u> </u>		
1412	<u>+</u>		••••••••••••••••••••••••••••••••••••••	∇	1	N	1	1			1	1			-							<u> </u>		of pulse car result
1413	 			∇	1	N	$\overline{\checkmark}$	$\overline{\mathbf{V}}$	1	Ì		0.8-4 pr 1√	7									Ì_		crust xrait
1415	<u> </u>			17	1	N	\checkmark	V					24200		1									
1418	<u></u> †	L	******	ť7	•	N	1	1	1								[CPR CONT.
1423	1	1		[7	1	IN	$\overline{\checkmark}$	∇	-		1	O-HILEP	ę.,	1										
1424	t	1		$\overline{\mathbf{Z}}$	1	N	1	17	*********			1	1											Epiget 1 0.3 mails

departed from the standard of care in the care and treatment.

of ______ a pediatric patient presenting to the Pediatric Intensive Care Unit with a past medical history of reactive airway disease and an immediate history of post-operative respiratory distress and difficult intubation by failing to appropriately monitor his respiratory status, including his end tidal CO2, and intervene appropriately to prevent cardiac arrest. Don't panic.

Think medicine first.

Document thoroughly, but do not alter the medical records.

The field secto The field secto Cautery Immediately Controlled c stenlewater chape removed or OFF VSS. 02 sat 99%

Smooth IV induction & propofol, easy mask ventilation. Maintained & sevoflummed 30%. Fio2. Drapes over mark. Surgeon began procedure + excised lerion, surgeon Attempted to use Cantery & resulting fire + burning of mark. Marke removed + area & face doused with saline + mater. No airway compromise noted. After a few minutes, pt. & largngospasm broken & propofol + positive pressure without difficulty. Pt. emerged with no further, incident. IV removed while patient moss combative while emerging. The Pt. was conversive, protecting airway with no difficulty breathing + SpD 2 100%. prior to transporting to PACH. Report given to PACH PN.

Right IJ was attempted and wire would not pass smoothly. Decision was made to put in a left IJ. **Comment @ 18:45** Trying to enter the chest, the LVAD graft was severed with the redo saw, exanguination was abrupt, cardia **Transportation @ 6:43**

Anesthesiologist

he was on anticoagulation PTA, admitted to EUH on 11/2/17 for heart transplant. He underwent heart transplant on 11/2, which was complicated intra-operatively by transection of the LVAD inflow cannula and massive bleeding/hypotension and requirement of emergent VA-ECMO, which he remains on today. He has required

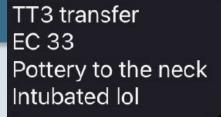
Surgeon

What can you testify about in a lawsuit?

Your personal knowledge.
 Your routine practice.
 Refresh your recollection by reviewing the medical records.

What is privileged?

Attorney – Client Husband – Wife Clergyman (Priest/Rabbi) Psychiatrist/Psychologist – patient


Peer-Review – O.C.G.A. 31-7-133

(a) Except in proceedings alleging violation of this article, the proceedings and records of a review organization shall be held in confidence and shall not be subject to discovery or introduction into evidence in any civil action; and no person who was in attendance at a meeting of such organization shall be permitted or required to testify in any such civil action as to any evidence or other matters produced or presented during the proceedings or activities of such organization or as to any findings, recommendations, evaluations, opinions, or other actions of such organization or any members thereof.

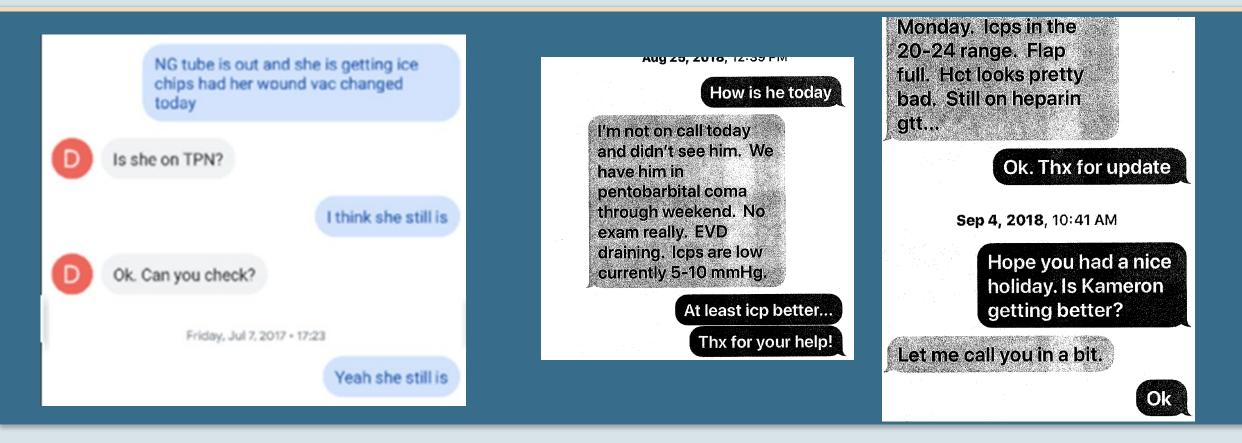
What is privileged?

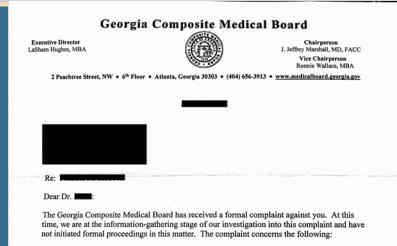
This is my pt. Very disappointing.

It's really really sad. Such a nice family. I really feel like this death was avoidable.

Those fut it pots

Fuck. just got here. I'll go see him but gotta meet in ED.


Northside has no surgical records for the big lady


No way that guy hasn't perf'd.

Totally. He has peritonitis

We just reordered Abx for stat and sending urine and blood

What is privileged?

The Board respectfully requests that you provide a written response to the allegations of this complaint within fifteen (15) days of the receipt of this letter. Additionally, please provide a certified (notarized) copy of the patient's records. <u>SEND ORIGINAL</u> <u>CERTIFICATION FORM ONLY, COPIES CANNOT BE ACCEPTED BY THE BOARD</u>. A subpoena is attached to facilitate the release of the records. If you no longer have access or are no longer custodian of the records, please call to inform of such so that arrangements can be made to properly obtain them. A records certification form is also enclosed for your convenience. Please return the original notarized certification along with the records. Upon receipt of your response to the complaint, a review of the investigative file will be made by the Board as to whether further action is warranted.

Thank you in advance for your cooperation in this matter. You will be advised of any Board action when a final decision has been rendered. If you have any questions, please contact Alexis Nelson at 404-463-8903 or by email at alexis.nelson@dch.ga.gov.

Sincerely,

Alleged physician

Patricia Sherman Enforcement Supervisor PS/an § 43-34A-6. Right to file grievance with state board; display of declaration of rights in waiting rooms; board review of complaints; inclusion in physician profile

"The patient has the right to file a grievance with the Georgia Composite Medical Board concerning the physician, staff, office, and treatment received. The patient should either call the board with such a complaint or send a written complaint to the board.

The board must review every complaint received to determine if there is sufficient evidence to warrant an investigation according to a procedure established by board regulation. Only investigated complaints upon which the board has taken disciplinary action shall be included in a physician's profile.

THIS IS CONFIDENTIAL; IT IS NOT PUBLIC KNOWLEDGE.

An Equal Opportunity Employer

Close the matter

Letter of concern

Private Consent Order

Public Consent Order

Thank you

CME Claiming

Please follow the directions below to complete the meeting evaluation and claim credits. Once you are enrolled for the activity an email is sent to the email address that is listed on your ASA account. **Don't try and claim until you receive an email from the ASA**. If you experience difficulties logging in or no longer have access to that email, don't hesitate to contact <u>ipmeetings@asahq.org</u>, and we will be happy to assist you.

Please do not create a duplicate account, your credit will not track to duplicate account.

NO ASA ACCOUNT

If you do not have an account with ASA, an email will be sent to you to create a free account.

ACCESSING THE WEBPAGE

Click the link below and log in using the email on your ASA account and password.

https://education.asahq.org/course/view.php?id=4179

RETRIEVING YOUR PASSWORD

You can retrieve or set a new password by entering your email address at: <u>https://www.asahq.org/member-center/forgot-password</u>

CLAIMING CREDIT

Please complete the steps below to evaluate the activity and claim CME.

- 1. Complete the evaluation.
- 2. Click on the certificate, enter the credit you are claiming.
- 3. Print your certificate or save it as a PDF for your files.

Please note you must claim your credits for this course by December 31, 2024. You will NOT be able to claim credits after this date.

