Expiratory Central Airway Collapse, Anesthetic Implications

Ricardo Diaz Milian MD
Assistant Professor, Anesthesiology and Perioperative Medicine
Augusta University
June 30, 2019
Objectives

• Review the anatomy and physiology of the central airways
• Define Expiratory Central Airway Collapse and its anesthetic implications
• Discuss the management of intra-operative airway collapse
• Outline the anesthetic management of Tracheobronchoplasty
Acknowledgements

• Edward Foley MD
• Maria Bauer MD
• Andrea Martinez-Velez MD
• Manuel Castresana MD
• Sunni Losito (Medical Illustrator)
Disclosures

• Boston Medical, provided a photograph of a DUMON Y airway-stent.
Diaz Milian R, Castresana MR. Recurrent Failure of Positive-Pressure Ventilation: Machine Malfunction or a Rare, Unexpected Cause? *J Cardiothorac Vasc Anesth* 2017; 32:2029-2030
Definition

- Expiratory Central Airway Collapse
- Tracheobronchomalacia (TBM)
- Expiratory Dynamic Airway Collapse (EDAC)
Anatomy of the Central Airways

Cross Section View
Bronchoscopic Anatomy of the Airway

Physiology of Airway Collapse

• Expiratory Flow limitation (EFL)
• 2 theories of EFL
 • Equal Pressure Point Theory
 • Wave Speed Theory
Expiratory Flow Limitation, Equal Pressure Point Theory
Expiratory Flow Limitation, Wave Speed Theory
Definition of Pathological Collapse

• The degree of collapse is debatable
• Traditionally, > 50%
 • Incidence
 • 13% in smokers
 • Up to 40% in patients with COPD
• 70 % of collapse correlates better with symptoms
 • Case reports of life-threatening collapse during general anesthesia and monitored anesthesia care

Risk Factors

• Smoking
• Chronic Obstructive Pulmonary Disease
• Females
• Older Age
Pathophysiology

B Acquired Expiratory Central Airway Collapse
- Tracheobronchomalacia

C Excessive Dynamic Airway Collapse
- Cross Section View
- Chronic Inflammation, Autoimmune disorder
- Smooth Muscle Atrophy

D Causes of TBM:
- Chronic polychondritis
- Tracheostomy
- Mucopolysaccharidosis
- Amyloidosis
- Mustard gas

COPD
- Asthma
- Foreign Body
- Masses

Causes of EDAC:
- Smoking
- Drugs (Steroids, beta agonists)
Diagnosis of ECAC

• Clinical Presentation

• Static Testing
 • Chest x-rays
 • Pulmonary Function tests

• Dynamic Testing
 • Bronchoscopy
 • Dynamic multi-detector CT scan
Anesthetic Implications of ECAC
Anesthetic Management of Patients with ECAC

- Precipitants of Airway Collapse
 - Induction of General Anesthesia
 - Muscle relaxation
 - Mechanical Ventilation

- The critical degree of collapse is unknown, but likely 70%
Anesthetic Management of Patients with ECAC

< 70% collapse, absence of severe symptoms
Consider alternatives to general anesthesia (regional anesthesia, neuraxial block, monitored anesthesia care)
If general anesthesia is considered, maintain spontaneous ventilation
Consider an emergency plan and prepare the proper equipment

>70% collapse, severe symptoms
Elective surgery: refer for corrective treatment of ECAC beforehand
Emergency surgery: consider mechanical circulatory support before induction

Prevention of Collapse

• Maintain spontaneous ventilation

• Monitored Anesthesia Care
 • Favor drugs that allow spontaneous ventilation (Dexmedetomidine, Ketamine)
 • Consider continuous positive pressure ventilation (CPAP) or high flow nasal cannula (HFNC)

• General Anesthesia
 • Avoid muscle relaxants
 • Prepare emergency equipment
Emergency Airway Equipment

• Endotracheal tube
• Laryngoscope
• Fiberoptic Scope
• Rigid bronchoscope (and operator)
• Jet ventilation
• Helium/Oxygen
Pre-Induction VV-ECMO

Intraoperative Management of Unexpected Airway Collapse
Intra-operative Airway Collapse

• Presentation
 • Sudden increase in peak and plateau pressures (VCV) or decrease in tidal volumes (PCV)
 • Loss of Capnography waveform
 • Difficulty hand-bag ventilation

• Differential diagnosis
 • Tube, circuit occlusion or machine malfunction
 • Bronchospasm
 • Undiagnosed mediastinal mass
Management of Collapse due to ECAC

• Return to spontaneous ventilation
• Positional changes
• Advancement of the tube to a non-collapsed segment
• Pneumatic Stenting
• Jet Ventilation
• Helium:Oxygen
• ECMO
Pneumatic Stenting

• Use of positive pressure to open the airway
• Recruitment maneuver
• Positive end expiratory pressure (PEEP)
 • High PEEP
 • Decreased preload
 • Decreased CO
 • Increased RV afterload
 • Decreased ventricular contractility
Jet Ventilation

- Pressurized oxygen at high respiratory rates
- Oxygenation \rightarrow Diffusion
- Ventilation \rightarrow Convection of flow
- Constant PEEP
- Complications
 - Barotrauma
 - Air trapping
 - Ischemia
 - Gastric insufflation
 - Arrhythmias
Jet Ventilation
Jet Ventilation

Jet Ventilation
Helium

• Light gas
• Available as
 • He:O₂ (79%/21%)
 • He:O₂ (72%/28%)
• More useful with hypercarbia than hypoxemia
Use of Helium
Use of Helium

[Diagram showing the flow of HeO₂]
Suspicion of Airway Collapse During Anesthesia

- \(P_{ac}, P_{cm} \) or \(TV \) (PC)
- Loss of ETCO\(_2\), difficult BV

- Deliver 100% FiO\(_2\)

- Systematic check for kinks/obstruction
 - ETT → circuit → machine (malfunction)

 - Cause found: Troubleshoot

 - No cause found

 - Auscultate

 - Unilateral breath sounds:
 - Mainstream intubation
 - Retrieve ETT until bilateral sounds heard
 - Consider other causes: PTX, mucus plug, pleural effusion

 - Diminished bilateral breath sounds

 - FO examination

 - FO suggestive of ECAC

 - Return to Spontaneous Ventilation
 - Positional changes

 - Advance ETT pass the obstruction

 - Pneumatic Stenting

 - Consider: Jet ventilation, Helium:Oxygen

 - Unresolved + instability or prolonged hypoxemia
 - Consider MCS
Emergence and Extubation

• Establish the degree of collapse with FO examination

• High risk of Postoperative respiratory failure
 • Perform a Spontaneous Breathing trial
 • Rapid Shallow Breathing index < 100
 • Oxygen Saturation > 90%
 • Observe for collapse (loss of capnography, increase respiratory pressures)

• Consider extubating to non-invasive ventilation

• Monitor in an intermediate care unit
Corrective Treatment of ECAC
Treatment of ECAC

• Medical Management
• Airway Stent placement
 • Trial
 • Palliative
• Tracheobronchoplasty
Medical Management of ECAC

- Lifestyle modifications
 - Smoking cessation
 - Weight loss
 - Optimization of comorbidities

- Pneumatic stenting
 - Continuous positive airway pressure (CPAP)
 - Non-invasive positive pressure ventilation
 - High flow nasal oxygen therapy
Corrective Treatment, Patient Selection

• Indication for surgery
 • Presence of severe symptoms (dyspnea and intractable cough) attributed to severe airway collapse (>90%).
 • Respiratory Failure requiring mechanical ventilation

• Poor Surgical candidates
 • Deemed unable to tolerate single lung ventilation
 • Preoperative hypoxemia
Management Algorithm

Airway Stent

- “Y” shaped stents
 - Metal
 - Silicone
- Placed via rigid bronchoscope
- Complications
 - Mucus plugging
 - Infection
 - Stent migration
 - Severe cough
 - Subglottic edema
 - Breakage

DUMON Y stent, provided by Boston Medical. Copyright Novatech SA, France
Airway Stent

Anesthetic Management of Airway Stent Placement

• Assess risk of collapse
• Prepare emergency equipment
• Total intravenous anesthesia

• Oxygenation and Ventilation
 • Apneic oxygenation
 • Intermittent ventilation
 • Jet ventilation
Tracheobronchoplasty

• Stabilization of membranous trachea by plication and mesh placement

• Improvement of symptoms
 • 3 months 77.8%
 • 1 year 75%
 • 2 year 67.6%
 • 5 years 65%

Tracheobronchoplasty

• Complications
 • Pneumonia
 • Atrial arrhythmias
 • Pulmonary embolism
 • Renal failure
 • Myocardial infarction
 • Need for tracheostomy
 • Mortality 5.7%
Tracheobronchoplasty

Anesthetic Management of TBP

• Preoperative Evaluation
 • Stress test
 • Poor functional capacity from suspected CAD + surgery can delayed for stent + DAT
 • Functional status
 • E.g. Karnofsky performance status
Anesthetic Management of TBP

• Induction of general anesthesia
• Maintenance
 • Total Intravenous Anesthesia
 • Brain activity monitor
• Airway
 • Intermittent ventilation
 • Jet Ventilation
 • One lung Ventilation
 • Modified left double lumen tube
 • Endobronchial tube
 • Combination technique
Endobronchial Tube

Airway Management of Tracheobronchoplasty

Anesthetic Management of TBP

• Extubation
 • Muscle reversal
 • Spontaneous breathing trial
 • Respiratory monitoring in an intensive care unit

• Post-operative Pain Control
 • *Thoracic epidural*
 • Paravertebral catheters
 • Ultrasound-guided fascial plane blocks
 • Serratus anterior
 • Erector Spinae block
Laser Tracheobronchoplasty

• Novel approach
• Suspension laryngoscopy
• Single study

Conclusions

• ECAC is difficult to recognize
• Significant risk of airway and ventilatory compromise
• > 70% collapse is significant, particularly when associated with symptoms
• > 90% collapse is critical, and an indication for surgical repair
Questions?

Thank you for your time
References

